Highly-sensitive and selective nitric oxide sensor based on electrolytically exfoliated graphene/flamespay-made SnO<inf>2</inf>nanocomposite films

© 2018, Chiang Mai University. All rights reserved. In this work, 0-5wt % electrolytically exfoliated graphene/flame-spray-made undoped SnO2nanocomposites were systematically studied for NO sensing at low working temperatures. Characterizations by X-ray diffraction and transmission/scanning electron...

Full description

Saved in:
Bibliographic Details
Main Authors: Nantikan Tammanoon, Anurat Wisitsoraat, Chakrit Sriprachuabwong, Ditsayut Phokharatkul, Adisorn Tuantranont, Sukon Phanichphant, Chaikarn Liewhiran
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050315009&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58233
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2018, Chiang Mai University. All rights reserved. In this work, 0-5wt % electrolytically exfoliated graphene/flame-spray-made undoped SnO2nanocomposites were systematically studied for NO sensing at low working temperatures. Characterizations by X-ray diffraction and transmission/scanning electron microscopy demonstrated that multilayer graphene sheets were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2phase. The sensing films fabricated by powder pasting and spin coating techniques were tested toward 0.125-5 ppm NO at temperatures ranging from 25°C to 350°C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt% provided an ultrahigh response of ∼7,275 toward 5 ppm of NO and good recovery stabilization at a low optimal operating temperature of 200°C. Furthermore, the sensors displayed high NO selectivity against NO2, H2, C3H6O, H2S and CH4. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2sensor is a highly promising candidate for sensitive and selective detections of NO in biomedical diagnostic applications.