Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications

© 2017 Elsevier B.V. The Eu3+-doped CaO-Gd2O3-SiO2-B2O3glasses were prepared to study photoluminescence, lasing potential and scintillation properties. Glasses absorb photons in ultraviolet, visible light and near infrared regions and are assigned to the energy transitions of Gd3+and Eu3+. Ultraviol...

Full description

Saved in:
Bibliographic Details
Main Authors: N. Wantana, E. Kaewnuam, B. Damdee, S. Kaewjaeng, S. Kothan, H. J. Kim, J. Kaewkhao
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031119012&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58303
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-58303
record_format dspace
spelling th-cmuir.6653943832-583032018-09-05T04:39:37Z Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications N. Wantana E. Kaewnuam B. Damdee S. Kaewjaeng S. Kothan H. J. Kim J. Kaewkhao Biochemistry, Genetics and Molecular Biology Chemistry Physics and Astronomy © 2017 Elsevier B.V. The Eu3+-doped CaO-Gd2O3-SiO2-B2O3glasses were prepared to study photoluminescence, lasing potential and scintillation properties. Glasses absorb photons in ultraviolet, visible light and near infrared regions and are assigned to the energy transitions of Gd3+and Eu3+. Ultraviolet with 275 nm can generate the strong red emission with 614 nm via energy transfer form Gd3+to Eu3+. X-ray scintillation study exhibits strong emission pattern due to Gd-Eu energy transfer. The optimum concentrations of Eu3+ion in this glass is 0.30 mol% as it results maximum emission intensity. The fluorescence lifetime of the5D0level decreases from 1.763 to 1.726 ms when concentration increased from 0.05 to 0.40 mol%. From Judd-Ofelt analysis, this glass exhibit high potential for using as laser medium for red laser device with high lasing power and energy extraction ratio. Moreover, this glass performs the integral scintillation efficiency as 13% compared with BGO. 2018-09-05T04:22:25Z 2018-09-05T04:22:25Z 2018-02-01 Journal 00222313 2-s2.0-85031119012 10.1016/j.jlumin.2017.10.004 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031119012&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58303
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Biochemistry, Genetics and Molecular Biology
Chemistry
Physics and Astronomy
spellingShingle Biochemistry, Genetics and Molecular Biology
Chemistry
Physics and Astronomy
N. Wantana
E. Kaewnuam
B. Damdee
S. Kaewjaeng
S. Kothan
H. J. Kim
J. Kaewkhao
Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications
description © 2017 Elsevier B.V. The Eu3+-doped CaO-Gd2O3-SiO2-B2O3glasses were prepared to study photoluminescence, lasing potential and scintillation properties. Glasses absorb photons in ultraviolet, visible light and near infrared regions and are assigned to the energy transitions of Gd3+and Eu3+. Ultraviolet with 275 nm can generate the strong red emission with 614 nm via energy transfer form Gd3+to Eu3+. X-ray scintillation study exhibits strong emission pattern due to Gd-Eu energy transfer. The optimum concentrations of Eu3+ion in this glass is 0.30 mol% as it results maximum emission intensity. The fluorescence lifetime of the5D0level decreases from 1.763 to 1.726 ms when concentration increased from 0.05 to 0.40 mol%. From Judd-Ofelt analysis, this glass exhibit high potential for using as laser medium for red laser device with high lasing power and energy extraction ratio. Moreover, this glass performs the integral scintillation efficiency as 13% compared with BGO.
format Journal
author N. Wantana
E. Kaewnuam
B. Damdee
S. Kaewjaeng
S. Kothan
H. J. Kim
J. Kaewkhao
author_facet N. Wantana
E. Kaewnuam
B. Damdee
S. Kaewjaeng
S. Kothan
H. J. Kim
J. Kaewkhao
author_sort N. Wantana
title Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications
title_short Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications
title_full Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications
title_fullStr Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications
title_full_unstemmed Energy transfer based emission analysis of Eu<sup>3+</sup>doped Gd<inf>2</inf>O<inf>3</inf>-CaO-SiO<inf>2</inf>-B<inf>2</inf>O<inf>3</inf>glasses for laser and X-rays detection material applications
title_sort energy transfer based emission analysis of eu<sup>3+</sup>doped gd<inf>2</inf>o<inf>3</inf>-cao-sio<inf>2</inf>-b<inf>2</inf>o<inf>3</inf>glasses for laser and x-rays detection material applications
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031119012&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58303
_version_ 1681425040165306368