Effect of PZT particle size on the electromechanical coupling coefficient of 0-3 PZT-cement composites

PZT-cement composites were produced using PZT ceramic of different particle size (3.8 μm to 620 μm). The effect of PZT particle size on the electromechanical coupling coefficient (Kt) of the composites was then investigated. The results showed that the particle size of PZT used to produce the compos...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chaipanich A., Jaitanong N.
格式: Article
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-68349120265&partnerID=40&md5=dafc974a0aae47ca0dff66876d9e00c7
http://cmuir.cmu.ac.th/handle/6653943832/5833
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
語言: English
實物特徵
總結:PZT-cement composites were produced using PZT ceramic of different particle size (3.8 μm to 620 μm). The effect of PZT particle size on the electromechanical coupling coefficient (Kt) of the composites was then investigated. The results showed that the particle size of PZT used to produce the composite has a noticeable effect on the Kt values. The electromechanical coupling coefficient was found to increase with the particle size of PZT used where Kt values are found to be at 16.1% and 20.5% for composites with median particle size of 3.8 μm and 620 μm respectively. Enhanced piezoelectricity can be explained when PZT ceramic particle increased since there would exist a more functioning ceramic (accompanying more PZT grains) and less contacting surfaces between the PZT ceramic and the cement matrix. These would lead to better piezoelectric properties of the composites.