Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats
© 2018 John Wiley & Sons Ltd. Aim: To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. Met...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050496336&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58338 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-58338 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-583382018-09-05T04:36:55Z Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats Krit Jaikumkao Anchalee Pongchaidecha Nuttawud Chueakula La ongdao Thongnak Keerati Wanchai Varanuj Chatsudthipong Nipon Chattipakorn Anusorn Lungkaphin Biochemistry, Genetics and Molecular Biology Medicine © 2018 John Wiley & Sons Ltd. Aim: To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. Methods: Obesity was induced by feeding a high-fat diet (HFD) to male Wistar rats for 16weeks. HFD-fed rats were treated with dapagliflozin (1 mg/kg/d) or metformin (30mg/kg/d) by oral gavage for 4weeks after insulin resistance had been established. The metabolic characteristics and renal function associated with lipid accumulation, inflammation, fibrosis, endoplasmic reticulum (ER) stress and apoptosis in the renal tissue were examined. Results: The results showed that HFD-fed rats developed both obesity and impaired renal function, along with increased renal triglyceride accumulation. Importantly, dapagliflozin had greater efficacy in improving renal function and reducing both body weight and visceral fat accumulation than metformin treatment. Dapagliflozin and metformin were found to have similar effects regarding the suppression of renal triglycerides, superoxide dismutase (SOD) expression and malondialdehyde (MDA) levels, subsequently leading to a decrease in renal inflammation and fibrosis. Renal ER stress and apoptosis were increased in HFD-fed rats and were effectively reduced after administration of dapagliflozin. The expression of renal SGLT2 was not affected by administration of dapagliflozin or metformin. Conclusion: Collectively, these findings indicate that dapagliflozin exerts renoprotective effects by alleviating obesity-induced renal inflammation, fibrosis, ER stress, apoptosis and lipid accumulation in the prediabetic condition. 2018-09-05T04:22:51Z 2018-09-05T04:22:51Z 2018-01-01 Journal 14631326 14628902 2-s2.0-85050496336 10.1111/dom.13441 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050496336&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58338 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology Medicine |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Medicine Krit Jaikumkao Anchalee Pongchaidecha Nuttawud Chueakula La ongdao Thongnak Keerati Wanchai Varanuj Chatsudthipong Nipon Chattipakorn Anusorn Lungkaphin Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats |
description |
© 2018 John Wiley & Sons Ltd. Aim: To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. Methods: Obesity was induced by feeding a high-fat diet (HFD) to male Wistar rats for 16weeks. HFD-fed rats were treated with dapagliflozin (1 mg/kg/d) or metformin (30mg/kg/d) by oral gavage for 4weeks after insulin resistance had been established. The metabolic characteristics and renal function associated with lipid accumulation, inflammation, fibrosis, endoplasmic reticulum (ER) stress and apoptosis in the renal tissue were examined. Results: The results showed that HFD-fed rats developed both obesity and impaired renal function, along with increased renal triglyceride accumulation. Importantly, dapagliflozin had greater efficacy in improving renal function and reducing both body weight and visceral fat accumulation than metformin treatment. Dapagliflozin and metformin were found to have similar effects regarding the suppression of renal triglycerides, superoxide dismutase (SOD) expression and malondialdehyde (MDA) levels, subsequently leading to a decrease in renal inflammation and fibrosis. Renal ER stress and apoptosis were increased in HFD-fed rats and were effectively reduced after administration of dapagliflozin. The expression of renal SGLT2 was not affected by administration of dapagliflozin or metformin. Conclusion: Collectively, these findings indicate that dapagliflozin exerts renoprotective effects by alleviating obesity-induced renal inflammation, fibrosis, ER stress, apoptosis and lipid accumulation in the prediabetic condition. |
format |
Journal |
author |
Krit Jaikumkao Anchalee Pongchaidecha Nuttawud Chueakula La ongdao Thongnak Keerati Wanchai Varanuj Chatsudthipong Nipon Chattipakorn Anusorn Lungkaphin |
author_facet |
Krit Jaikumkao Anchalee Pongchaidecha Nuttawud Chueakula La ongdao Thongnak Keerati Wanchai Varanuj Chatsudthipong Nipon Chattipakorn Anusorn Lungkaphin |
author_sort |
Krit Jaikumkao |
title |
Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats |
title_short |
Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats |
title_full |
Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats |
title_fullStr |
Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats |
title_full_unstemmed |
Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats |
title_sort |
dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050496336&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58338 |
_version_ |
1681425046745120768 |