Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats
© 2018 Wiley Periodicals, Inc. Electrospinning of a biodegradable polymer blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) is reported for the first time. Effects of several solution parameters on electrospinning are explored, including types of single and binary s...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044770013&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58444 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-58444 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-584442018-09-05T04:31:02Z Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats Sarunphat Khatsee Donraporn Daranarong Winita Punyodom Patnarin Worajittiphon Chemistry Materials Science © 2018 Wiley Periodicals, Inc. Electrospinning of a biodegradable polymer blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) is reported for the first time. Effects of several solution parameters on electrospinning are explored, including types of single and binary solvents, binary solvent mixing ratio, polymer blend concentration, polymer blending ratio, and loading content of tetrabutyl titanate as a compatibilizer. An electrospinnability–solubility map of the PLA/PBAT blend is firstly developed for the facile selection of a suitable binary solvent system, thus simplifying the laborious, time-consuming, trial-and-error process. A particular binary solvent system derived from good and non-solvent serves as the most suitable medium for the successful preparation of homogeneous bead-free electrospun PLA/PBAT nanofibers. It is revealed that the compatibilizer acts not only as a diameter size tuner for the PLA/PBAT fibers but also as a mechanical property enhancer for the immiscible PLA/PBAT electrospun mats. Moreover, the antibacterial activity of the drug-loaded PLA/PBAT fibrous mats suggests their potential application as antibiotic-carrier mats. Preparation of the composite mats comprising bead-free fibers with an average size at sub-micrometer scale is also demonstrated, additionally promoting the possibility of using the PLA/PBAT-based electrospun mats as a matrix of various additives for a wide range of applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46486. 2018-09-05T04:24:09Z 2018-09-05T04:24:09Z 2018-07-20 Journal 10974628 00218995 2-s2.0-85044770013 10.1002/app.46486 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044770013&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58444 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemistry Materials Science |
spellingShingle |
Chemistry Materials Science Sarunphat Khatsee Donraporn Daranarong Winita Punyodom Patnarin Worajittiphon Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats |
description |
© 2018 Wiley Periodicals, Inc. Electrospinning of a biodegradable polymer blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) is reported for the first time. Effects of several solution parameters on electrospinning are explored, including types of single and binary solvents, binary solvent mixing ratio, polymer blend concentration, polymer blending ratio, and loading content of tetrabutyl titanate as a compatibilizer. An electrospinnability–solubility map of the PLA/PBAT blend is firstly developed for the facile selection of a suitable binary solvent system, thus simplifying the laborious, time-consuming, trial-and-error process. A particular binary solvent system derived from good and non-solvent serves as the most suitable medium for the successful preparation of homogeneous bead-free electrospun PLA/PBAT nanofibers. It is revealed that the compatibilizer acts not only as a diameter size tuner for the PLA/PBAT fibers but also as a mechanical property enhancer for the immiscible PLA/PBAT electrospun mats. Moreover, the antibacterial activity of the drug-loaded PLA/PBAT fibrous mats suggests their potential application as antibiotic-carrier mats. Preparation of the composite mats comprising bead-free fibers with an average size at sub-micrometer scale is also demonstrated, additionally promoting the possibility of using the PLA/PBAT-based electrospun mats as a matrix of various additives for a wide range of applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46486. |
format |
Journal |
author |
Sarunphat Khatsee Donraporn Daranarong Winita Punyodom Patnarin Worajittiphon |
author_facet |
Sarunphat Khatsee Donraporn Daranarong Winita Punyodom Patnarin Worajittiphon |
author_sort |
Sarunphat Khatsee |
title |
Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats |
title_short |
Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats |
title_full |
Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats |
title_fullStr |
Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats |
title_full_unstemmed |
Electrospinning polymer blend of PLA and PBAT: Electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats |
title_sort |
electrospinning polymer blend of pla and pbat: electrospinnability–solubility map and effect of polymer solution parameters toward application as antibiotic-carrier mats |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044770013&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58444 |
_version_ |
1681425066476175360 |