Holey 2D Nanosheets of Low-Valent Manganese Oxides with an Excellent Oxygen Catalytic Activity and a High Functionality as a Catalyst for Li–O<inf>2</inf>Batteries
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Holey 2D nanosheets of low-valent Mn2O3can be synthesized by thermally induced phase transition of exfoliated layered MnO2nanosheets. The heat treatment of layered MnO2nanosheets at elevated temperatures leads not only to transitions to low-val...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042153167&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58455 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Holey 2D nanosheets of low-valent Mn2O3can be synthesized by thermally induced phase transition of exfoliated layered MnO2nanosheets. The heat treatment of layered MnO2nanosheets at elevated temperatures leads not only to transitions to low-valent manganese oxides but also to the creation of surface hole in the 2D nanosheet crystallites. Despite distinct phase transitions, highly anisotropic 2D morphology of the precursor MnO2material remains intact upon the heat treatment whereas the diameter of surface hole becomes larger with increasing heating temperature. The obtained holey 2D Mn2O3nanosheets show promising electrocatalyst performances for oxygen evolution reaction, which are much superior to that of nonporous Mn2O3crystal. Among the present materials, the holey Mn2O3nanosheet calcined at 500 °C displays the best electrocatalyst functionality with markedly decreased overpotential, indicating the importance of heating condition in optimizing the electrocatalytic activity. Of prime importance is that this material shows much better catalytic activity for Li–O2batteries than does nonporous Mn2O3, underscoring the critical role of porous 2D morphology in this functionality. This study clearly demonstrates the unique advantage of holey 2D nanosheet morphology in exploring economically feasible transition metal oxide-based electrocatalysts and electrodes for Li–O2batteries. |
---|