Recognition-based character segmentation for multi-level writing style
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Character segmentation is an important task in optical character recognition (OCR). The quality of any OCR system is highly dependent on character segmentation algorithm. Despite the availability of various character segmentation methods...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047623457&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58497 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-58497 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-584972018-09-05T04:25:36Z Recognition-based character segmentation for multi-level writing style Papangkorn Inkeaw Jakramate Bootkrajang Phasit Charoenkwan Sanparith Marukatat Shinn Ying Ho Jeerayut Chaijaruwanich Computer Science © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Character segmentation is an important task in optical character recognition (OCR). The quality of any OCR system is highly dependent on character segmentation algorithm. Despite the availability of various character segmentation methods proposed to date, existing methods cannot satisfyingly segment characters belonging to some complex writing styles such as the Lanna Dhamma characters. In this paper, a new character segmentation method named graph partitioning-based character segmentation is proposed to address the problem. The proposed method can deal with multi-level writing style as well as touching and broken characters. It is considered as a generalization of existing approaches to multi-level writing style. The proposed method consists of three phases. In the first phase, a newly devised over-segmentation technique based on morphological skeleton is used to obtain redundant fragments of a word image. The fragments are then used to form a segmentation hypotheses graph. In the last phase, the hypotheses graph is partitioned into subgraphs each corresponding to a segmented character using the partitioning algorithm developed specifically for character segmentation purpose. Experimental results based on handwritten Lanna Dhamma characters datasets showed that the proposed method achieved high correct segmentation rate and outperformed existing methods for the Lanna Dhamma alphabet. 2018-09-05T04:25:36Z 2018-09-05T04:25:36Z 2018-06-01 Journal 14332825 14332833 2-s2.0-85047623457 10.1007/s10032-018-0302-5 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047623457&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58497 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Computer Science |
spellingShingle |
Computer Science Papangkorn Inkeaw Jakramate Bootkrajang Phasit Charoenkwan Sanparith Marukatat Shinn Ying Ho Jeerayut Chaijaruwanich Recognition-based character segmentation for multi-level writing style |
description |
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Character segmentation is an important task in optical character recognition (OCR). The quality of any OCR system is highly dependent on character segmentation algorithm. Despite the availability of various character segmentation methods proposed to date, existing methods cannot satisfyingly segment characters belonging to some complex writing styles such as the Lanna Dhamma characters. In this paper, a new character segmentation method named graph partitioning-based character segmentation is proposed to address the problem. The proposed method can deal with multi-level writing style as well as touching and broken characters. It is considered as a generalization of existing approaches to multi-level writing style. The proposed method consists of three phases. In the first phase, a newly devised over-segmentation technique based on morphological skeleton is used to obtain redundant fragments of a word image. The fragments are then used to form a segmentation hypotheses graph. In the last phase, the hypotheses graph is partitioned into subgraphs each corresponding to a segmented character using the partitioning algorithm developed specifically for character segmentation purpose. Experimental results based on handwritten Lanna Dhamma characters datasets showed that the proposed method achieved high correct segmentation rate and outperformed existing methods for the Lanna Dhamma alphabet. |
format |
Journal |
author |
Papangkorn Inkeaw Jakramate Bootkrajang Phasit Charoenkwan Sanparith Marukatat Shinn Ying Ho Jeerayut Chaijaruwanich |
author_facet |
Papangkorn Inkeaw Jakramate Bootkrajang Phasit Charoenkwan Sanparith Marukatat Shinn Ying Ho Jeerayut Chaijaruwanich |
author_sort |
Papangkorn Inkeaw |
title |
Recognition-based character segmentation for multi-level writing style |
title_short |
Recognition-based character segmentation for multi-level writing style |
title_full |
Recognition-based character segmentation for multi-level writing style |
title_fullStr |
Recognition-based character segmentation for multi-level writing style |
title_full_unstemmed |
Recognition-based character segmentation for multi-level writing style |
title_sort |
recognition-based character segmentation for multi-level writing style |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047623457&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58497 |
_version_ |
1681425076438695936 |