How to estimate statistical characteristics based on a sample: Nonparametric maximum likelihood approach leads to sample mean, sample variance, etc.

© Springer International Publishing AG 2018. In many practical situations, we need to estimate different statistical characteristics based on a sample. In some cases, we know that the corresponding probability distribution belongs to a known finite-parametric family of distributions. In such cases,...

Full description

Saved in:
Bibliographic Details
Main Authors: Vladik Kreinovich, Thongchai Dumrongpokaphan
Format: Book Series
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85037861764&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58566
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© Springer International Publishing AG 2018. In many practical situations, we need to estimate different statistical characteristics based on a sample. In some cases, we know that the corresponding probability distribution belongs to a known finite-parametric family of distributions. In such cases, a reasonable idea is to use the Maximum Likelihood method to estimate the corresponding parameters, and then to compute the value of the desired statistical characteristic for the distribution with these parameters. In some practical situations, we do not know any family containing the unknown distribution. We show that in such nonparametric cases, the Maximum Likelihood approach leads to the use of sample mean, sample variance, etc.