Efficient parameter-estimating algorithms for symmetry-motivated models: Econometrics and beyond
© 2018, Springer International Publishing AG. It is known that symmetry ideas can explain the empirical success of many non-linear models. This explanation makes these models theoretically justified and thus, more reliable. However, the models remain non-linear and thus, identification or the model’...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book Series |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85038827524&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58587 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | © 2018, Springer International Publishing AG. It is known that symmetry ideas can explain the empirical success of many non-linear models. This explanation makes these models theoretically justified and thus, more reliable. However, the models remain non-linear and thus, identification or the model’s parameters based on the observations remains a computationally expensive nonlinear optimization problem. In this paper, we show that symmetry ideas can not only help to select and justify a nonlinear model, they can also help us design computationally efficient almost-linear algorithms for identifying the model’s parameters. |
---|