Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m
© 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for eac...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-58600 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-586002018-09-05T04:33:47Z Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta Computer Science Mathematics © 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for each code, where s and n are arbitrary positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length npsover R are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over F5+ uF5of length 2 · 3t· 5sare listed for any positive integer t. 2018-09-05T04:26:41Z 2018-09-05T04:26:41Z 2018-01-01 Journal 19305338 19305346 2-s2.0-85046414061 10.3934/amc.2018016 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Computer Science Mathematics |
spellingShingle |
Computer Science Mathematics Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m |
description |
© 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for each code, where s and n are arbitrary positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length npsover R are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over F5+ uF5of length 2 · 3t· 5sare listed for any positive integer t. |
format |
Journal |
author |
Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta |
author_facet |
Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta |
author_sort |
Yonglin Cao |
title |
Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m |
title_short |
Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m |
title_full |
Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m |
title_fullStr |
Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m |
title_full_unstemmed |
Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m |
title_sort |
constacyclic codes of length np<sup>s</sup>over f<inf>p</inf>m + uf<inf>p</inf>m |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600 |
_version_ |
1681425095689502720 |