Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m

© 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for eac...

Full description

Saved in:
Bibliographic Details
Main Authors: Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang Wei Fu, Jian Gao, Songsak Sriboonchitta
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-58600
record_format dspace
spelling th-cmuir.6653943832-586002018-09-05T04:33:47Z Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta Computer Science Mathematics © 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for each code, where s and n are arbitrary positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length npsover R are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over F5+ uF5of length 2 · 3t· 5sare listed for any positive integer t. 2018-09-05T04:26:41Z 2018-09-05T04:26:41Z 2018-01-01 Journal 19305338 19305346 2-s2.0-85046414061 10.3934/amc.2018016 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Computer Science
Mathematics
spellingShingle Computer Science
Mathematics
Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Jian Gao
Songsak Sriboonchitta
Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m
description © 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for each code, where s and n are arbitrary positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length npsover R are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over F5+ uF5of length 2 · 3t· 5sare listed for any positive integer t.
format Journal
author Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Jian Gao
Songsak Sriboonchitta
author_facet Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Jian Gao
Songsak Sriboonchitta
author_sort Yonglin Cao
title Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m
title_short Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m
title_full Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m
title_fullStr Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m
title_full_unstemmed Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m
title_sort constacyclic codes of length np<sup>s</sup>over f<inf>p</inf>m + uf<inf>p</inf>m
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600
_version_ 1681425095689502720