Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites

© 2017, Springer Science+Business Media, LLC. PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3piezoelectric ceramic composites were fabricated using 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3(BNBT), Portland cement, and polyvinylidene fluoride (PVDF). The microstructure, ac...

Full description

Saved in:
Bibliographic Details
Main Authors: Rattiyakorn Rianyoi, Ruamporn Potong, Athipong Ngamjarurojana, Arnon Chaipanich
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028850221&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58707
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-58707
record_format dspace
spelling th-cmuir.6653943832-587072018-09-05T04:31:55Z Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites Rattiyakorn Rianyoi Ruamporn Potong Athipong Ngamjarurojana Arnon Chaipanich Engineering Materials Science © 2017, Springer Science+Business Media, LLC. PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3piezoelectric ceramic composites were fabricated using 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3(BNBT), Portland cement, and polyvinylidene fluoride (PVDF). The microstructure, acoustic impedance (Zc), dielectric properties, and influence of poling temperature and electrical poling field on the piezoelectric coefficient (d33) and the total period of the poling process of composites with 50 vol% BNBT and 1–10 vol% PVDF were investigated. The results indicated that Zc, the dielectric constant, and the dielectric loss of the composites decrease as the PVDF content increases. The d33of the composites was found to enhance more clearly when the content of PVDF is more than 2 vol%. The d33results of the composites showed an optimum increase of 45% when 5 vol% PVDF was used (under an electrical poling field of 1.5 kV/mm and a poling temperature of 80°C). Moreover, these composites with PVDF were found to exhibit enhanced poling behavior in that the PVDF was able to reduce the total period of the poling process. Interestingly, the piezoelectric voltage coefficient (g33) of the composite with 5 vol% PVDF content had the highest value of 33.59 mV·m/N. Therefore, it can be safely concluded that this new kind of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3piezoelectric ceramic composite has the potential to be used in concrete as a sensor for structural health monitoring applications. 2018-09-05T04:29:04Z 2018-09-05T04:29:04Z 2018-01-01 Journal 15734803 00222461 2-s2.0-85028850221 10.1007/s10853-017-1533-4 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028850221&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58707
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Engineering
Materials Science
spellingShingle Engineering
Materials Science
Rattiyakorn Rianyoi
Ruamporn Potong
Athipong Ngamjarurojana
Arnon Chaipanich
Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites
description © 2017, Springer Science+Business Media, LLC. PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3piezoelectric ceramic composites were fabricated using 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3(BNBT), Portland cement, and polyvinylidene fluoride (PVDF). The microstructure, acoustic impedance (Zc), dielectric properties, and influence of poling temperature and electrical poling field on the piezoelectric coefficient (d33) and the total period of the poling process of composites with 50 vol% BNBT and 1–10 vol% PVDF were investigated. The results indicated that Zc, the dielectric constant, and the dielectric loss of the composites decrease as the PVDF content increases. The d33of the composites was found to enhance more clearly when the content of PVDF is more than 2 vol%. The d33results of the composites showed an optimum increase of 45% when 5 vol% PVDF was used (under an electrical poling field of 1.5 kV/mm and a poling temperature of 80°C). Moreover, these composites with PVDF were found to exhibit enhanced poling behavior in that the PVDF was able to reduce the total period of the poling process. Interestingly, the piezoelectric voltage coefficient (g33) of the composite with 5 vol% PVDF content had the highest value of 33.59 mV·m/N. Therefore, it can be safely concluded that this new kind of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3piezoelectric ceramic composite has the potential to be used in concrete as a sensor for structural health monitoring applications.
format Journal
author Rattiyakorn Rianyoi
Ruamporn Potong
Athipong Ngamjarurojana
Arnon Chaipanich
author_facet Rattiyakorn Rianyoi
Ruamporn Potong
Athipong Ngamjarurojana
Arnon Chaipanich
author_sort Rattiyakorn Rianyoi
title Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites
title_short Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites
title_full Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites
title_fullStr Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites
title_full_unstemmed Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94(Bi<inf>0.5</inf>Na<inf>0.5</inf>)TiO<inf>3</inf>–0.06BaTiO<inf>3</inf>piezoelectric ceramic composites
title_sort poling effects and piezoelectric properties of pvdf-modified 0–3 connectivity cement-based/lead-free 0.94(bi<inf>0.5</inf>na<inf>0.5</inf>)tio<inf>3</inf>–0.06batio<inf>3</inf>piezoelectric ceramic composites
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028850221&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58707
_version_ 1681425115751907328