Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response
© 2018, The Author(s). The Kolmogorov model has been applied to many biological and environmental problems. We are particularly interested in one of its variants, that is, a Gauss-type predator–prey model that includes the Allee effect and Holling type-III functional response. Instead of using class...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042932995&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58791 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-58791 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-587912018-09-05T04:32:22Z Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response Kanokrat Baisad Sompop Moonchai Mathematics © 2018, The Author(s). The Kolmogorov model has been applied to many biological and environmental problems. We are particularly interested in one of its variants, that is, a Gauss-type predator–prey model that includes the Allee effect and Holling type-III functional response. Instead of using classic first order differential equations to formulate the model, fractional order differential equations are utilized. The existence and uniqueness of a nonnegative solution as well as the conditions for the existence of equilibrium points are provided. We then investigate the local stability of the three types of equilibrium points by using the linearization method. The conditions for the existence of a Hopf bifurcation at the positive equilibrium are also presented. To further affirm the theoretical results, numerical simulations for the coexistence equilibrium point are carried out. 2018-09-05T04:32:22Z 2018-09-05T04:32:22Z 2018-12-01 Journal 16871847 16871839 2-s2.0-85042932995 10.1186/s13662-018-1535-9 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042932995&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58791 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Kanokrat Baisad Sompop Moonchai Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response |
description |
© 2018, The Author(s). The Kolmogorov model has been applied to many biological and environmental problems. We are particularly interested in one of its variants, that is, a Gauss-type predator–prey model that includes the Allee effect and Holling type-III functional response. Instead of using classic first order differential equations to formulate the model, fractional order differential equations are utilized. The existence and uniqueness of a nonnegative solution as well as the conditions for the existence of equilibrium points are provided. We then investigate the local stability of the three types of equilibrium points by using the linearization method. The conditions for the existence of a Hopf bifurcation at the positive equilibrium are also presented. To further affirm the theoretical results, numerical simulations for the coexistence equilibrium point are carried out. |
format |
Journal |
author |
Kanokrat Baisad Sompop Moonchai |
author_facet |
Kanokrat Baisad Sompop Moonchai |
author_sort |
Kanokrat Baisad |
title |
Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response |
title_short |
Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response |
title_full |
Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response |
title_fullStr |
Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response |
title_full_unstemmed |
Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response |
title_sort |
analysis of stability and hopf bifurcation in a fractional gauss-type predator–prey model with allee effect and holling type-iii functional response |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042932995&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58791 |
_version_ |
1681425131456430080 |