On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉

© 2018 Elsevier B.V. In this paper, we consider cyclic codes of odd length n over the local, non-chain ring R=Z2s[u]∕〈uk〉 = Z2s+uZ2s+…+uk−1Z2s(uk=0), for any integers s≥1 and k≥2. An explicit algebraic representation of such codes is obtained. This algebraic structure is then used to establish the d...

Full description

Saved in:
Bibliographic Details
Main Authors: Hai Q. Dinh, Abhay Kumar Singh, Pratyush Kumar, Songsak Sriboonchitta
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047331677&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58797
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-58797
record_format dspace
spelling th-cmuir.6653943832-587972018-09-05T04:32:26Z On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉 Hai Q. Dinh Abhay Kumar Singh Pratyush Kumar Songsak Sriboonchitta Mathematics © 2018 Elsevier B.V. In this paper, we consider cyclic codes of odd length n over the local, non-chain ring R=Z2s[u]∕〈uk〉 = Z2s+uZ2s+…+uk−1Z2s(uk=0), for any integers s≥1 and k≥2. An explicit algebraic representation of such codes is obtained. This algebraic structure is then used to establish the duals of all cyclic codes. Among others, all self-dual cyclic codes of odd length n over the ring R are determined. Moreover, some examples are provided which produce several optimal codes. 2018-09-05T04:32:26Z 2018-09-05T04:32:26Z 2018-08-01 Journal 0012365X 2-s2.0-85047331677 10.1016/j.disc.2018.04.028 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047331677&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58797
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Hai Q. Dinh
Abhay Kumar Singh
Pratyush Kumar
Songsak Sriboonchitta
On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉
description © 2018 Elsevier B.V. In this paper, we consider cyclic codes of odd length n over the local, non-chain ring R=Z2s[u]∕〈uk〉 = Z2s+uZ2s+…+uk−1Z2s(uk=0), for any integers s≥1 and k≥2. An explicit algebraic representation of such codes is obtained. This algebraic structure is then used to establish the duals of all cyclic codes. Among others, all self-dual cyclic codes of odd length n over the ring R are determined. Moreover, some examples are provided which produce several optimal codes.
format Journal
author Hai Q. Dinh
Abhay Kumar Singh
Pratyush Kumar
Songsak Sriboonchitta
author_facet Hai Q. Dinh
Abhay Kumar Singh
Pratyush Kumar
Songsak Sriboonchitta
author_sort Hai Q. Dinh
title On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉
title_short On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉
title_full On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉
title_fullStr On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉
title_full_unstemmed On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉
title_sort on the structure of cyclic codes over the ring z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047331677&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58797
_version_ 1681425132583649280