Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans

The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to les...

Full description

Saved in:
Bibliographic Details
Main Authors: Arunothai Jampeetong, Hans Brix
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=69249229598&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59252
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-59252
record_format dspace
spelling th-cmuir.6653943832-592522018-09-10T03:13:06Z Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans Arunothai Jampeetong Hans Brix Agricultural and Biological Sciences The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to less than 0.2 d-1at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+concentrations in the plant tissue only increased three-fold, but uptake of K+was reduced, resulting in very high Na+/K+ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g-1FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt. © 2009 Elsevier B.V. All rights reserved. 2018-09-10T03:13:06Z 2018-09-10T03:13:06Z 2009-10-01 Journal 03043770 2-s2.0-69249229598 10.1016/j.aquabot.2009.05.003 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=69249229598&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59252
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Agricultural and Biological Sciences
spellingShingle Agricultural and Biological Sciences
Arunothai Jampeetong
Hans Brix
Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
description The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to less than 0.2 d-1at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+concentrations in the plant tissue only increased three-fold, but uptake of K+was reduced, resulting in very high Na+/K+ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g-1FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt. © 2009 Elsevier B.V. All rights reserved.
format Journal
author Arunothai Jampeetong
Hans Brix
author_facet Arunothai Jampeetong
Hans Brix
author_sort Arunothai Jampeetong
title Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_short Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_full Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_fullStr Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_full_unstemmed Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_sort effects of nacl salinity on growth, morphology, photosynthesis and proline accumulation of salvinia natans
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=69249229598&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59252
_version_ 1681425216853508096