Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction
Molybdenum trioxide (MoO3) nanowire with unprecedentedly high aspect ratios (>200) and good crystallinity was prepared via decomposition of (NH4)6Mo7O24·4H2O under a microwave-assisted hydrothermal (MH) process. The nanowire was orthorhombic MoO3with 50 nm in diameter and 10-12 μm in length. The...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=69549102958&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59463 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | Molybdenum trioxide (MoO3) nanowire with unprecedentedly high aspect ratios (>200) and good crystallinity was prepared via decomposition of (NH4)6Mo7O24·4H2O under a microwave-assisted hydrothermal (MH) process. The nanowire was orthorhombic MoO3with 50 nm in diameter and 10-12 μm in length. The conventional hydrothermal (CH) reaction required higher temperature and longer reaction times to produce one-dimensional MoO3, yet its quality was lower. In the electrochemical hydrogen evolution reaction in a H2SO4solution, MoO3nanowire from MH process showed much higher electrocatalytic activity than MoO3prepared from CH method and commercial bulk MoO3particles. The facile vectorial electron transport along the nanowire axis was considered to be responsible for the excellent electrocatalytic activity of the MH-MoO3nanowire. © 2009 Elsevier B.V. All rights reserved. |
---|