D<inf>ST</inf> index prediction using joint and dual unscented Kalman filter

This paper presents a short-term prediction of the disturbance storm time (DST) index using unscented Kalman filter. Joint and dual estimation methods are studied to examine an improvement of DST index prediction by estimating modal parameters and updating recursively. Comparison between these teach...

全面介紹

Saved in:
書目詳細資料
Main Authors: Boonsri Kaewkham-Ai, Robert F. Harrison
格式: Conference Proceeding
出版: 2018
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77954180429&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59494
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
實物特徵
總結:This paper presents a short-term prediction of the disturbance storm time (DST) index using unscented Kalman filter. Joint and dual estimation methods are studied to examine an improvement of DST index prediction by estimating modal parameters and updating recursively. Comparison between these teachniquies and a fixed model parameter prediction are made in terms of root mean square error (rmse). It is found that joint and dual estimation methods give less rmse than state estimation alone for all DST range, whereas state estimation alone shows better performance than joint and dual estimation for DST below-80 nT.