Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics
Single-phase cubic Ba(Fe,Nb)0.5O3(BFN) powder was synthesized by solid-state reaction at 900, 1000, 1100, 1200 °C for 4 h in air. X-ray diffraction indicated that the BFN oxide mixture calcined at 1200 °C crystallizes to the pure cubic perovskite phase. The crystallite size of the BFN increases slig...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67349130506&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59693 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-59693 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-596932018-09-10T03:24:44Z Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics S. Eitssayeam U. Intatha K. Pengpat G. Rujijanagul K. J D MacKenzie T. Tunkasiri Materials Science Physics and Astronomy Single-phase cubic Ba(Fe,Nb)0.5O3(BFN) powder was synthesized by solid-state reaction at 900, 1000, 1100, 1200 °C for 4 h in air. X-ray diffraction indicated that the BFN oxide mixture calcined at 1200 °C crystallizes to the pure cubic perovskite phase. The crystallite size of the BFN increases slightly with increasing temperature, while the lattice strain progressively decreases. BFN ceramics were produced from this powder by sintering at 1350-1400 °C for 4 h in air. Samples prepared under these conditions achieved up to 97.4% of the theoretical density. The temperature dependence of their dielectric constant and loss tangent, measured at difference frequencies, shows an increase in the dielectric constant with sintering temperature and measurement frequency which is probably due to disorder on the B site ion of the perovskite. The Mössbauer spectra of these sintered BFN ceramics suggests the presence of a superstructure on the B-cation sublattice. © 2008 Elsevier B.V. All rights reserved. 2018-09-10T03:19:30Z 2018-09-10T03:19:30Z 2009-09-01 Journal 15671739 2-s2.0-67349130506 10.1016/j.cap.2008.10.003 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67349130506&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59693 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Materials Science Physics and Astronomy |
spellingShingle |
Materials Science Physics and Astronomy S. Eitssayeam U. Intatha K. Pengpat G. Rujijanagul K. J D MacKenzie T. Tunkasiri Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics |
description |
Single-phase cubic Ba(Fe,Nb)0.5O3(BFN) powder was synthesized by solid-state reaction at 900, 1000, 1100, 1200 °C for 4 h in air. X-ray diffraction indicated that the BFN oxide mixture calcined at 1200 °C crystallizes to the pure cubic perovskite phase. The crystallite size of the BFN increases slightly with increasing temperature, while the lattice strain progressively decreases. BFN ceramics were produced from this powder by sintering at 1350-1400 °C for 4 h in air. Samples prepared under these conditions achieved up to 97.4% of the theoretical density. The temperature dependence of their dielectric constant and loss tangent, measured at difference frequencies, shows an increase in the dielectric constant with sintering temperature and measurement frequency which is probably due to disorder on the B site ion of the perovskite. The Mössbauer spectra of these sintered BFN ceramics suggests the presence of a superstructure on the B-cation sublattice. © 2008 Elsevier B.V. All rights reserved. |
format |
Journal |
author |
S. Eitssayeam U. Intatha K. Pengpat G. Rujijanagul K. J D MacKenzie T. Tunkasiri |
author_facet |
S. Eitssayeam U. Intatha K. Pengpat G. Rujijanagul K. J D MacKenzie T. Tunkasiri |
author_sort |
S. Eitssayeam |
title |
Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics |
title_short |
Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics |
title_full |
Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics |
title_fullStr |
Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics |
title_full_unstemmed |
Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)<inf>0.5</inf>O<inf>3</inf>ceramics |
title_sort |
effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type ba(fe,nb)<inf>0.5</inf>o<inf>3</inf>ceramics |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67349130506&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59693 |
_version_ |
1681425298576375808 |