Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres
A new combination of using biocompatible molecules as dispersants for both inorganic and organic single-walled carbon nanotubes (SWNT), followed by fiber spinning into a coagulation bath, was reported. Chitosan-titanate and titanate-SWNT dispersions were prepared from an acidic solution of Chitosan,...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=68749113820&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59702 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-59702 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-597022018-09-10T03:24:59Z Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres C. Dechakiatkrai U. C. Lynam K. J. Gilmoie Di J. Chen G. G. Wallace Sukon Phanichphant Dmitry V. Bavykin Frank C. Walsh Materials Science Physics and Astronomy A new combination of using biocompatible molecules as dispersants for both inorganic and organic single-walled carbon nanotubes (SWNT), followed by fiber spinning into a coagulation bath, was reported. Chitosan-titanate and titanate-SWNT dispersions were prepared from an acidic solution of Chitosan, which were ultrasonicated using pulse for 60 min and a high power sonic tip. Samples of the fibers, or of films from the dispersions were placed into wells of 96-well polystyrene cell culture plates and soaked overnight in two changes of culture media. Optical micrographs of the dispersion used in the spinning of fiber results in the alteration of spinning conditions and is responsible for the formation of a rough surface in the initial stages of gel fiber formation. No redox activity is observed from the fibers and all fibers displayed swelling when cycled while maintaining their structural integrity. 2018-09-10T03:19:46Z 2018-09-10T03:19:46Z 2009-07-01 Journal 15272648 14381656 2-s2.0-68749113820 10.1002/adem.200800337 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=68749113820&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59702 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Materials Science Physics and Astronomy |
spellingShingle |
Materials Science Physics and Astronomy C. Dechakiatkrai U. C. Lynam K. J. Gilmoie Di J. Chen G. G. Wallace Sukon Phanichphant Dmitry V. Bavykin Frank C. Walsh Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres |
description |
A new combination of using biocompatible molecules as dispersants for both inorganic and organic single-walled carbon nanotubes (SWNT), followed by fiber spinning into a coagulation bath, was reported. Chitosan-titanate and titanate-SWNT dispersions were prepared from an acidic solution of Chitosan, which were ultrasonicated using pulse for 60 min and a high power sonic tip. Samples of the fibers, or of films from the dispersions were placed into wells of 96-well polystyrene cell culture plates and soaked overnight in two changes of culture media. Optical micrographs of the dispersion used in the spinning of fiber results in the alteration of spinning conditions and is responsible for the formation of a rough surface in the initial stages of gel fiber formation. No redox activity is observed from the fibers and all fibers displayed swelling when cycled while maintaining their structural integrity. |
format |
Journal |
author |
C. Dechakiatkrai U. C. Lynam K. J. Gilmoie Di J. Chen G. G. Wallace Sukon Phanichphant Dmitry V. Bavykin Frank C. Walsh |
author_facet |
C. Dechakiatkrai U. C. Lynam K. J. Gilmoie Di J. Chen G. G. Wallace Sukon Phanichphant Dmitry V. Bavykin Frank C. Walsh |
author_sort |
C. Dechakiatkrai |
title |
Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres |
title_short |
Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres |
title_full |
Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres |
title_fullStr |
Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres |
title_full_unstemmed |
Single Walled Carbon Nanotube/Trititanate Nanotube Composite Fibres |
title_sort |
single walled carbon nanotube/trititanate nanotube composite fibres |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=68749113820&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59702 |
_version_ |
1681425300305477632 |