Common fixed points of a nonexpansive semigroup and a convergence theorem for Mann iterations in geodesic metric spaces
First, we consider a strongly continuous semigroup of nonexpansive mappings defined on a closed convex subset of a complete CAT(0) space and prove a convergence of a Mann iteration to a common fixed point of the mappings. This result is motivated by a result of Kirk (2002) and of Suzuki (2002). Seco...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=63449115095&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59740 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | First, we consider a strongly continuous semigroup of nonexpansive mappings defined on a closed convex subset of a complete CAT(0) space and prove a convergence of a Mann iteration to a common fixed point of the mappings. This result is motivated by a result of Kirk (2002) and of Suzuki (2002). Second, we obtain a result on limits of subsequences of Mann iterations of multivalued nonexpansive mappings on metric spaces of hyperbolic type, which leads to a convergence theorem for nonexpansive mappings on these spaces. © 2009. |
---|