Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability

The probiotic products available in the market nowadays are mostly in the form of liquid or semisolid formulations which show low cell viability after oral administration, mainly because the bacteria do not survive the harsh conditions in the stomach. The development of suitable dry dosage forms ena...

Full description

Saved in:
Bibliographic Details
Main Authors: Srikanjana Klayraung, Helmut Viernstein, Siriporn Okonogi
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=61349087293&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59927
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-59927
record_format dspace
spelling th-cmuir.6653943832-599272018-09-10T03:24:02Z Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability Srikanjana Klayraung Helmut Viernstein Siriporn Okonogi Pharmacology, Toxicology and Pharmaceutics The probiotic products available in the market nowadays are mostly in the form of liquid or semisolid formulations which show low cell viability after oral administration, mainly because the bacteria do not survive the harsh conditions in the stomach. The development of suitable dry dosage forms enable higher bacterial survival and consequently is the main aim of the present study. An anticipated advantage is that due to the low water-activity lyophilized bacterial cells will preserve their viability. Further, by a proper selection of a tablet forming matrix, it is foreseen that the entrapped bacteria are protected against the low pH in the stomach. In this study, the effects on bacterial survival in tablets were investigated concerning compression force, matrix forming excipients such as hydroxypropyl methylcellulose phthalate (HPMCP) or other swelling agents. The results showed that the proportion of matrix forming excipients in tablets and the compression force affected the properties of probiotic tablets in terms of tensile strength and disintegration as well as the survival of the bacteria. The tensile strength of the tablets increased with increase of HPMCP content. Tablets manufactured with high compression force showed a slow disintegration time and high bacterial cell viability (more than 80%). Incorporation of sodium alginate in the tablets resulted in higher cell survival in simulated GI fluid (>90%) and a suitable disintegration time (approximately 5 h). By a proper design of the formulation, tablets with a fast disintegration time and a high preservation of bacterial cell viability were developed. © 2008 Elsevier B.V. All rights reserved. 2018-09-10T03:24:02Z 2018-09-10T03:24:02Z 2009-03-31 Journal 03785173 2-s2.0-61349087293 10.1016/j.ijpharm.2008.11.004 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=61349087293&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59927
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Pharmacology, Toxicology and Pharmaceutics
spellingShingle Pharmacology, Toxicology and Pharmaceutics
Srikanjana Klayraung
Helmut Viernstein
Siriporn Okonogi
Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability
description The probiotic products available in the market nowadays are mostly in the form of liquid or semisolid formulations which show low cell viability after oral administration, mainly because the bacteria do not survive the harsh conditions in the stomach. The development of suitable dry dosage forms enable higher bacterial survival and consequently is the main aim of the present study. An anticipated advantage is that due to the low water-activity lyophilized bacterial cells will preserve their viability. Further, by a proper selection of a tablet forming matrix, it is foreseen that the entrapped bacteria are protected against the low pH in the stomach. In this study, the effects on bacterial survival in tablets were investigated concerning compression force, matrix forming excipients such as hydroxypropyl methylcellulose phthalate (HPMCP) or other swelling agents. The results showed that the proportion of matrix forming excipients in tablets and the compression force affected the properties of probiotic tablets in terms of tensile strength and disintegration as well as the survival of the bacteria. The tensile strength of the tablets increased with increase of HPMCP content. Tablets manufactured with high compression force showed a slow disintegration time and high bacterial cell viability (more than 80%). Incorporation of sodium alginate in the tablets resulted in higher cell survival in simulated GI fluid (>90%) and a suitable disintegration time (approximately 5 h). By a proper design of the formulation, tablets with a fast disintegration time and a high preservation of bacterial cell viability were developed. © 2008 Elsevier B.V. All rights reserved.
format Journal
author Srikanjana Klayraung
Helmut Viernstein
Siriporn Okonogi
author_facet Srikanjana Klayraung
Helmut Viernstein
Siriporn Okonogi
author_sort Srikanjana Klayraung
title Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability
title_short Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability
title_full Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability
title_fullStr Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability
title_full_unstemmed Development of tablets containing probiotics: Effects of formulation and processing parameters on bacterial viability
title_sort development of tablets containing probiotics: effects of formulation and processing parameters on bacterial viability
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=61349087293&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59927
_version_ 1681425341768269824