Extrusion printed polymer structures: A facile and versatile approach to tailored drug delivery platforms
A novel extrusion printing system was used to create drug delivery structures wherein dexamethasone-21-phosphate disodium salt (Dex21P) was encapsulated within a biodegradable polymer (PLGA) and water soluble poly(vinyl alcohol) (PVA) configurations. The ability to control the drug release profile t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-81855185758&partnerID=40&md5=c71e7ce2c72f9c82e3ec66c435f66edf http://www.ncbi.nlm.nih.gov/pubmed/22101281 http://cmuir.cmu.ac.th/handle/6653943832/6005 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
Summary: | A novel extrusion printing system was used to create drug delivery structures wherein dexamethasone-21-phosphate disodium salt (Dex21P) was encapsulated within a biodegradable polymer (PLGA) and water soluble poly(vinyl alcohol) (PVA) configurations. The ability to control the drug release profile through the spatial distribution of drug within the printed 3-dimensional structures is demonstrated. The fabricated configurations were characterised by optical microscopy and SEM to evaluate surface morphology. The results clearly demonstrate the successful encapsulation of dexamethasone within a laminated PLGA:PVA structure. The resulting drug release profiles from the structures show a two stage release profile with distinctly different release rates and minimal initial burst release observed. Dexamethasone release was monitored over a 4-month period. This approach clearly demonstrates that the extrusion printing technique provides a facile and versatile approach to fabrication of novel drug delivery platforms. © 2011. |
---|