Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea

This paper presents an optimal economic dispatch of electrical power plants by using back-propagation neural networks. The method of economic dispatch for generating units at different loads must have total fuel cost at the minimum point. There are many conventional methods that can use to solve eco...

Full description

Saved in:
Bibliographic Details
Main Authors: Sakorn Panta, Suttichai Premrudeepreechacharn
Format: Conference Proceeding
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=58149087899&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60319
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-60319
record_format dspace
spelling th-cmuir.6653943832-603192018-09-10T03:41:04Z Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea Sakorn Panta Suttichai Premrudeepreechacharn Energy This paper presents an optimal economic dispatch of electrical power plants by using back-propagation neural networks. The method of economic dispatch for generating units at different loads must have total fuel cost at the minimum point. There are many conventional methods that can use to solve economic dispatch problem such as Lagrange multiplier method, Lamda iteration method and Newton-Raphson method. However, an obstacle in optimal economic dispatch of conventional methods is the changed load. They are necessary to find the optimal economic dispatch from time to time. Moreover, they need a lot of time to repeat calculation for a new solution again. This paper presents back-propagation neural networks model to carry out instead the conventional Lamda iteration method. It is compared with the experimental results of electrical power system of 3 and 10 generating units respectively. The testing results of the back-propagation neural networks are compared with the Lamda iteration method by testing the teaching data and non-teaching data. It shows clearly that the back-propagation neural networks can find out the solutions accurately and use time to calculate less than other systems that are tested. Error of prediction will be increased slightly by the number of generating units in electrical power plants because it needs to learn a lot of input and output data in the neural network dramatically. © 2008 IEEE. 2018-09-10T03:41:04Z 2018-09-10T03:41:04Z 2008-12-01 Conference Proceeding 2-s2.0-58149087899 10.1109/ICPE.2007.4692450 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=58149087899&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60319
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Energy
spellingShingle Energy
Sakorn Panta
Suttichai Premrudeepreechacharn
Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea
description This paper presents an optimal economic dispatch of electrical power plants by using back-propagation neural networks. The method of economic dispatch for generating units at different loads must have total fuel cost at the minimum point. There are many conventional methods that can use to solve economic dispatch problem such as Lagrange multiplier method, Lamda iteration method and Newton-Raphson method. However, an obstacle in optimal economic dispatch of conventional methods is the changed load. They are necessary to find the optimal economic dispatch from time to time. Moreover, they need a lot of time to repeat calculation for a new solution again. This paper presents back-propagation neural networks model to carry out instead the conventional Lamda iteration method. It is compared with the experimental results of electrical power system of 3 and 10 generating units respectively. The testing results of the back-propagation neural networks are compared with the Lamda iteration method by testing the teaching data and non-teaching data. It shows clearly that the back-propagation neural networks can find out the solutions accurately and use time to calculate less than other systems that are tested. Error of prediction will be increased slightly by the number of generating units in electrical power plants because it needs to learn a lot of input and output data in the neural network dramatically. © 2008 IEEE.
format Conference Proceeding
author Sakorn Panta
Suttichai Premrudeepreechacharn
author_facet Sakorn Panta
Suttichai Premrudeepreechacharn
author_sort Sakorn Panta
title Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea
title_short Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea
title_full Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea
title_fullStr Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea
title_full_unstemmed Economic dispatch for power generation using artificial neural network ICPE'07 conference in Daegu, Korea
title_sort economic dispatch for power generation using artificial neural network icpe'07 conference in daegu, korea
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=58149087899&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60319
_version_ 1681425413889327104