On stability of rotordynamic systems with rotor-stator contact interaction
In machine systems where a rotor spins within a finite clearance space supported by bearings, contact between the rotor and its surround can result in persistent coupled vibration of the rotor and stator. When the vibration response is driven predominantly by friction forces, rotordynamic stability...
Saved in:
Main Author: | |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=54849441431&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60331 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-60331 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-603312018-09-10T03:48:00Z On stability of rotordynamic systems with rotor-stator contact interaction Matthew O.T. Cole Engineering Mathematics Physics and Astronomy In machine systems where a rotor spins within a finite clearance space supported by bearings, contact between the rotor and its surround can result in persistent coupled vibration of the rotor and stator. When the vibration response is driven predominantly by friction forces, rotordynamic stability becomes a serious issue. This paper introduces a theory for model-based verification of dynamic stability in rotor systems with stator contact and rub. Generalized multi-degree-of-freedom linear models of rotor and stator lateral vibration are considered, combined with contact models that account for finite clearance and Coulomb friction. State-space conditions for global stability as well as stability of contact-free synchronous whirl responses are derived using Lyapunov's direct method. This leads to feasibility problems involving matrix inequalities that can be quickly verified using numerical routines for convex optimization. Parametric studies involving flexible rotor models indicate that tight bounds on regions of stability can be obtained. A case study involving a realistic machine model illustrates how design optimization based on the theory might be used to overcome instability problems in real machines. © 2008 The Royal Society. 2018-09-10T03:41:14Z 2018-09-10T03:41:14Z 2008-12-08 Journal 14712946 13645021 2-s2.0-54849441431 10.1098/rspa.2008.0237 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=54849441431&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60331 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Engineering Mathematics Physics and Astronomy |
spellingShingle |
Engineering Mathematics Physics and Astronomy Matthew O.T. Cole On stability of rotordynamic systems with rotor-stator contact interaction |
description |
In machine systems where a rotor spins within a finite clearance space supported by bearings, contact between the rotor and its surround can result in persistent coupled vibration of the rotor and stator. When the vibration response is driven predominantly by friction forces, rotordynamic stability becomes a serious issue. This paper introduces a theory for model-based verification of dynamic stability in rotor systems with stator contact and rub. Generalized multi-degree-of-freedom linear models of rotor and stator lateral vibration are considered, combined with contact models that account for finite clearance and Coulomb friction. State-space conditions for global stability as well as stability of contact-free synchronous whirl responses are derived using Lyapunov's direct method. This leads to feasibility problems involving matrix inequalities that can be quickly verified using numerical routines for convex optimization. Parametric studies involving flexible rotor models indicate that tight bounds on regions of stability can be obtained. A case study involving a realistic machine model illustrates how design optimization based on the theory might be used to overcome instability problems in real machines. © 2008 The Royal Society. |
format |
Journal |
author |
Matthew O.T. Cole |
author_facet |
Matthew O.T. Cole |
author_sort |
Matthew O.T. Cole |
title |
On stability of rotordynamic systems with rotor-stator contact interaction |
title_short |
On stability of rotordynamic systems with rotor-stator contact interaction |
title_full |
On stability of rotordynamic systems with rotor-stator contact interaction |
title_fullStr |
On stability of rotordynamic systems with rotor-stator contact interaction |
title_full_unstemmed |
On stability of rotordynamic systems with rotor-stator contact interaction |
title_sort |
on stability of rotordynamic systems with rotor-stator contact interaction |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=54849441431&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60331 |
_version_ |
1681425416145862656 |