Growth kinetic and characterization of RF-Sputtered ZnO:Al Nanostructures

ZnO:Al nanostructures with 1% by mole of Al were prepared by radio frequency sputtering on copper and quartz substrates. The ZnO:Al nanostructures obtained exhibited needle- or tree-like structures with the diameter ranging from 30 to 100 nm. It was suggested that these ZnO:Al nanostructures could b...

Full description

Saved in:
Bibliographic Details
Main Authors: Supab Choopun, Niyom Hongsith, Ekasiddh Wongrat, Teerasak Kamwanna, Somsorn Singkarat, Pongsri Mangkorntong, Nikorn Mangkorntong, Torranin Chairuangsri
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=37849036736&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60544
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:ZnO:Al nanostructures with 1% by mole of Al were prepared by radio frequency sputtering on copper and quartz substrates. The ZnO:Al nanostructures obtained exhibited needle- or tree-like structures with the diameter ranging from 30 to 100 nm. It was suggested that these ZnO:Al nanostructures could be single-crystalline hexagonal structures growing along the direction with branching along the 〈0001〉 direction. From Hall measurement, ZnO:Al nanostructures had a resistivity in the order of 10-2 Ω·cm, a carrier concentration of 1020 cm-3, and a Hall mobility of 3 cm2·(V·s)-1. From X-ray diffraction, transmission electron microscopy and Raman results, ZnO:Al nanostructures had direction perpendicular to the surface, whereas ZnO nanobelts had the c-axis perpendicular to the surface. In addition, the growth mechanism of the wire and belt-like nanostructure could be explained by kinetics of anisotropic growth via a vapor-solid mechanism. This information would be useful for further applications of ZnO:Al nanostructures. © 2007 The American Ceramic Society.