Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content
The irreversibility of the antiferroelectric (AFE) to FE phase transition in Pb1-x Bax Zr O3, x=0.75-0.1, compositions is shown to be a consequence of lattice vacancies arising from PbO evaporation during ceramic processing. Previously, the absence of a FE→AFE cooling transition was thought to be du...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=40549110595&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60740 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-60740 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-607402018-09-10T03:48:41Z Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content T. Bongkarn G. Rujijanagul S. J. Milne Physics and Astronomy The irreversibility of the antiferroelectric (AFE) to FE phase transition in Pb1-x Bax Zr O3, x=0.75-0.1, compositions is shown to be a consequence of lattice vacancies arising from PbO evaporation during ceramic processing. Previously, the absence of a FE→AFE cooling transition was thought to be due to the transformational strain and the fragmentation of ferroelectric domains. Appropriate compensating levels of excess PbO added to starting powders generate the FE→AFE transition. For lower levels of Ba2+ substitution, x=0.05, the transition is reversible in noncompensated samples, but PbO compensation raises the FE→AFE transition temperature by ∼25 °C. © 2008 American Institute of Physics. 2018-09-10T03:48:41Z 2018-09-10T03:48:41Z 2008-03-14 Journal 00036951 2-s2.0-40549110595 10.1063/1.2890060 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=40549110595&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60740 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Physics and Astronomy |
spellingShingle |
Physics and Astronomy T. Bongkarn G. Rujijanagul S. J. Milne Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content |
description |
The irreversibility of the antiferroelectric (AFE) to FE phase transition in Pb1-x Bax Zr O3, x=0.75-0.1, compositions is shown to be a consequence of lattice vacancies arising from PbO evaporation during ceramic processing. Previously, the absence of a FE→AFE cooling transition was thought to be due to the transformational strain and the fragmentation of ferroelectric domains. Appropriate compensating levels of excess PbO added to starting powders generate the FE→AFE transition. For lower levels of Ba2+ substitution, x=0.05, the transition is reversible in noncompensated samples, but PbO compensation raises the FE→AFE transition temperature by ∼25 °C. © 2008 American Institute of Physics. |
format |
Journal |
author |
T. Bongkarn G. Rujijanagul S. J. Milne |
author_facet |
T. Bongkarn G. Rujijanagul S. J. Milne |
author_sort |
T. Bongkarn |
title |
Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content |
title_short |
Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content |
title_full |
Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content |
title_fullStr |
Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content |
title_full_unstemmed |
Antiferroelectric-ferroelectric phase transitions in Pb1-x Bax Zr O3 ceramics: Effect of PbO content |
title_sort |
antiferroelectric-ferroelectric phase transitions in pb1-x bax zr o3 ceramics: effect of pbo content |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=40549110595&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60740 |
_version_ |
1681425491711492096 |