Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor
ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in a single step by flame spray pyrolysis (FSP) using zinc naphthenate and palladium (II) acetylacetonate dissolved in toluene-acetonitrile (80:20 vol%) as precursors. The effect of Pd loading on the ethanol gas sensing performance...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547640827&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60932 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-60932 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-609322018-09-10T04:11:01Z Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor Chaikarn Liewhiran Sukon Phanichphant Biochemistry, Genetics and Molecular Biology Chemistry Engineering Physics and Astronomy ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in a single step by flame spray pyrolysis (FSP) using zinc naphthenate and palladium (II) acetylacetonate dissolved in toluene-acetonitrile (80:20 vol%) as precursors. The effect of Pd loading on the ethanol gas sensing performance of the ZnO nanoparticles and the crystalline sizes were investigated. The particle properties were analyzed by XRD, BET, AFM, SEM (EDS line scan mode), TEM, STEM, EDS, and CO-pulse chemisorption measurements. A trend of an increase in specific surface area of samples and a decrease in the dBETwith increasing Pd concentrations was noted. ZnO nanoparticles were observed as particles presenting clear spheroidal, hexagonal and rod-like morphologies. The sizes of ZnO spheroidal and hexagonal particle crystallites were in the 10-20 nm range. ZnO nanorods were in the range of 10-20 nm in width and 20-50 nm in length. The size of Pd nanoparticles increased and Pd-dispersion% decreased with increasing Pd concentrations. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3substrates interdigitated with Au electrodes. The film morphology was analyzed by SEM and EDS analyses. The gas sensing of ethanol (25-250 ppm) was studied in dry air at 400°C. The oxidation of ethanol on the sensing surface of the semiconductor was confirmed by MS. A well-dispersed of 1 mol%Pd/ZnO films showed the highest sensitivity and the fastest response time (within seconds). © 2007 by MDPI. 2018-09-10T04:01:28Z 2018-09-10T04:01:28Z 2007-01-01 Journal 14248220 14243210 2-s2.0-34547640827 10.3390/s7071159 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547640827&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60932 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology Chemistry Engineering Physics and Astronomy |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Chemistry Engineering Physics and Astronomy Chaikarn Liewhiran Sukon Phanichphant Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor |
description |
ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in a single step by flame spray pyrolysis (FSP) using zinc naphthenate and palladium (II) acetylacetonate dissolved in toluene-acetonitrile (80:20 vol%) as precursors. The effect of Pd loading on the ethanol gas sensing performance of the ZnO nanoparticles and the crystalline sizes were investigated. The particle properties were analyzed by XRD, BET, AFM, SEM (EDS line scan mode), TEM, STEM, EDS, and CO-pulse chemisorption measurements. A trend of an increase in specific surface area of samples and a decrease in the dBETwith increasing Pd concentrations was noted. ZnO nanoparticles were observed as particles presenting clear spheroidal, hexagonal and rod-like morphologies. The sizes of ZnO spheroidal and hexagonal particle crystallites were in the 10-20 nm range. ZnO nanorods were in the range of 10-20 nm in width and 20-50 nm in length. The size of Pd nanoparticles increased and Pd-dispersion% decreased with increasing Pd concentrations. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3substrates interdigitated with Au electrodes. The film morphology was analyzed by SEM and EDS analyses. The gas sensing of ethanol (25-250 ppm) was studied in dry air at 400°C. The oxidation of ethanol on the sensing surface of the semiconductor was confirmed by MS. A well-dispersed of 1 mol%Pd/ZnO films showed the highest sensitivity and the fastest response time (within seconds). © 2007 by MDPI. |
format |
Journal |
author |
Chaikarn Liewhiran Sukon Phanichphant |
author_facet |
Chaikarn Liewhiran Sukon Phanichphant |
author_sort |
Chaikarn Liewhiran |
title |
Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor |
title_short |
Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor |
title_full |
Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor |
title_fullStr |
Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor |
title_full_unstemmed |
Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor |
title_sort |
effects of palladium loading on the response of a thick film flame-made zno gas sensor for detection of ethanol vapor |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547640827&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60932 |
_version_ |
1681425527198449664 |