Effect of calcination conditions on phase formation and particle size of lead nickel niobate powders synthesized by using Ni<inf>4</inf>Nb<inf>2</inf>O<inf>9</inf>precursor
An approach to synthesize lead nickel niobate, Pb(Ni1/3Nb2/3)O3or PNN, powders with a modified two-stage mixed oxide synthetic route has been developed. Novel intermediate phase of nickel diniobate (Ni4Nb2O9) was employed as a B-site precursor, with the formation of the PNN phase investigated as a f...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548097714&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61076 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | An approach to synthesize lead nickel niobate, Pb(Ni1/3Nb2/3)O3or PNN, powders with a modified two-stage mixed oxide synthetic route has been developed. Novel intermediate phase of nickel diniobate (Ni4Nb2O9) was employed as a B-site precursor, with the formation of the PNN phase investigated as a function of calcination conditions by TG-DTA and XRD techniques. Morphology, particle size and chemical composition have been determined via a combination of SEM and EDX techniques. It has been found that the unreacted PbO and Pb1.45Nb2O6.26phases tend to form together with PNN, depending on calcination conditions. It is seen that optimization of calcination conditions can lead to a 100% yield of PNN in a cubic phase. © 2007 Elsevier B.V. All rights reserved. |
---|