Effects of calcination conditions on phase and morphology evolution of lead zirconate powders synthesized by solid-state reaction
Lead zirconate (PbZrO3) powder has been synthesized by a solid-state reaction via a rapid vibro-milling technique. The effects of calcination temperature, dwell time and heating/cooling rates on phase formation, morphology, particle size and chemical composition of the powders have been investigated...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547270462&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61082 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | Lead zirconate (PbZrO3) powder has been synthesized by a solid-state reaction via a rapid vibro-milling technique. The effects of calcination temperature, dwell time and heating/cooling rates on phase formation, morphology, particle size and chemical composition of the powders have been investigated by TG-DTA, XRD, SEM and EDX techniques. The results indicated that at calcination temperature lower than 800 °C minor phases of unreacted PbO and ZrO2were found to form together with the perovskite PbZrO3phase. However, single-phase PbZrO3powders were successfully obtained at calcination conditions of 800 °C for 3 h or 850 °C for 1 h, with heating/cooling rates of 20 °C/min. Higher temperatures and longer dwell times clearly favored the particle growth and formation of large and hard agglomerates. © Springer Science+Business Media, LLC 2007. |
---|