Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming
Recyclable high-melt-strength (HMS) PP has been introduced as an alternative choice to replace crosslinked material in a tandem foaming extrusion process. A filamentary die was selected to promote the optimum processing condition. The cell nucleation and volume expansion behaviors have been investig...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33745596820&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61561 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-61561 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-615612018-09-11T08:58:24Z Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming Wanrudee Kaewmesri Patrick C. Lee Chul B. Park Jantrawan Pumchusak Chemical Engineering Materials Science Recyclable high-melt-strength (HMS) PP has been introduced as an alternative choice to replace crosslinked material in a tandem foaming extrusion process. A filamentary die was selected to promote the optimum processing condition. The cell nucleation and volume expansion behaviors have been investigated as a function of the aspects of die temperature, CO2 content, and talc content. The results exhibited a significant relationship between the processing parameters and foaming behaviors. Low density (i.e., 12~14 fold), fine-celled (i.e., 107-109 cells/cm 3) PP foams were successfully produced using a small amount of talc (i.e., 0.8 wt%) and 5 wt% CO2. 2018-09-11T08:55:06Z 2018-09-11T08:55:06Z 2006-07-10 Conference Proceeding 2-s2.0-33745596820 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33745596820&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61561 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemical Engineering Materials Science |
spellingShingle |
Chemical Engineering Materials Science Wanrudee Kaewmesri Patrick C. Lee Chul B. Park Jantrawan Pumchusak Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming |
description |
Recyclable high-melt-strength (HMS) PP has been introduced as an alternative choice to replace crosslinked material in a tandem foaming extrusion process. A filamentary die was selected to promote the optimum processing condition. The cell nucleation and volume expansion behaviors have been investigated as a function of the aspects of die temperature, CO2 content, and talc content. The results exhibited a significant relationship between the processing parameters and foaming behaviors. Low density (i.e., 12~14 fold), fine-celled (i.e., 107-109 cells/cm 3) PP foams were successfully produced using a small amount of talc (i.e., 0.8 wt%) and 5 wt% CO2. |
format |
Conference Proceeding |
author |
Wanrudee Kaewmesri Patrick C. Lee Chul B. Park Jantrawan Pumchusak |
author_facet |
Wanrudee Kaewmesri Patrick C. Lee Chul B. Park Jantrawan Pumchusak |
author_sort |
Wanrudee Kaewmesri |
title |
Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming |
title_short |
Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming |
title_full |
Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming |
title_fullStr |
Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming |
title_full_unstemmed |
Effects of CO<inf>2</inf> and talc contents on recyclable HMS PP foaming |
title_sort |
effects of co<inf>2</inf> and talc contents on recyclable hms pp foaming |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33745596820&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61561 |
_version_ |
1681425643642814464 |