Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties

Electron beam-irradiated crosslinking has been studied in a series of acetylene-impregnated polyesters and amorphous copolyesters, including poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(cyclohexane dimethylene terephthalate) (PCDT), and poly(cyclohexane dimethylene te...

Full description

Saved in:
Bibliographic Details
Main Authors: W. Punyodom, R. A. Jones, I. M. Ward, A. F. Johnson
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33646680557&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61577
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-61577
record_format dspace
spelling th-cmuir.6653943832-615772018-09-11T08:58:29Z Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties W. Punyodom R. A. Jones I. M. Ward A. F. Johnson Chemistry Materials Science Electron beam-irradiated crosslinking has been studied in a series of acetylene-impregnated polyesters and amorphous copolyesters, including poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(cyclohexane dimethylene terephthalate) (PCDT), and poly(cyclohexane dimethylene terephthalate-co-ethylene terephthalate) (P(CDT-co-ET)) having 29 and 60 wt % ethylene terephthalate (ET). The extent of crosslinking was observed by gel fraction measurements and was found to be significantly influenced by the aliphatic chain content of the polyesters (PET < PBT < PCDT). In addition, as the preirradiation crystallinity of the polyesters was reduced, the extent of acetylene-enhanced crosslinking was greatly raised. Decreases in the postirradiation crystalline melting temperature and degree of crystallinity were observed in all the polyesters, using differential scanning calorimetry measurements. Particularly significant findings have been the shift in the glass-transition temperatures (Tg) to higher temperatures and the decrease in loss tangents at higher temperatures, both of which confirm that crosslinking has taken place. The storage moduli (E′) in the rubbery plateau region of PCDT and P(CDT-co-ET) were significantly affected by irradiation dose. Increased network tightness in postirradiated PBT and PCDT films was also inferred from melt-rheology measurements, in which stress relaxed more slowly following a stepped strain. Improvements in the mechanical properties of the irradiated polyesters and co-polyesters were clearly evidenced by the increased modulus at higher temperatures, observed using dynamic mechanical thermal analysis and melt-rheology methods. © 2006 Wiley Periodicals, Inc. 2018-09-11T08:55:28Z 2018-09-11T08:55:28Z 2006-06-15 Journal 10974628 00218995 2-s2.0-33646680557 10.1002/app.22875 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33646680557&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61577
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Chemistry
Materials Science
spellingShingle Chemistry
Materials Science
W. Punyodom
R. A. Jones
I. M. Ward
A. F. Johnson
Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties
description Electron beam-irradiated crosslinking has been studied in a series of acetylene-impregnated polyesters and amorphous copolyesters, including poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(cyclohexane dimethylene terephthalate) (PCDT), and poly(cyclohexane dimethylene terephthalate-co-ethylene terephthalate) (P(CDT-co-ET)) having 29 and 60 wt % ethylene terephthalate (ET). The extent of crosslinking was observed by gel fraction measurements and was found to be significantly influenced by the aliphatic chain content of the polyesters (PET < PBT < PCDT). In addition, as the preirradiation crystallinity of the polyesters was reduced, the extent of acetylene-enhanced crosslinking was greatly raised. Decreases in the postirradiation crystalline melting temperature and degree of crystallinity were observed in all the polyesters, using differential scanning calorimetry measurements. Particularly significant findings have been the shift in the glass-transition temperatures (Tg) to higher temperatures and the decrease in loss tangents at higher temperatures, both of which confirm that crosslinking has taken place. The storage moduli (E′) in the rubbery plateau region of PCDT and P(CDT-co-ET) were significantly affected by irradiation dose. Increased network tightness in postirradiated PBT and PCDT films was also inferred from melt-rheology measurements, in which stress relaxed more slowly following a stepped strain. Improvements in the mechanical properties of the irradiated polyesters and co-polyesters were clearly evidenced by the increased modulus at higher temperatures, observed using dynamic mechanical thermal analysis and melt-rheology methods. © 2006 Wiley Periodicals, Inc.
format Journal
author W. Punyodom
R. A. Jones
I. M. Ward
A. F. Johnson
author_facet W. Punyodom
R. A. Jones
I. M. Ward
A. F. Johnson
author_sort W. Punyodom
title Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties
title_short Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties
title_full Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties
title_fullStr Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties
title_full_unstemmed Radiation-induced crosslinking of acetylene-impregnated polyesters. II. Effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties
title_sort radiation-induced crosslinking of acetylene-impregnated polyesters. ii. effects of preirradiation crystallinity, molecular structure, and postirradiation crosslinking on mechanical properties
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33646680557&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61577
_version_ 1681425646657470464