Hybrid fluorometric flow analyzer for ammonia
We describe a robust, highly sensitive instrument for the determination of ambient ammonia. The instrument uses two syringe pumps to handle three liquids. The flow configuration is a hybrid between traditional flow injection (FI) and sequential injection (SI) schemes. This hybrid flow analyzer spend...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645224022&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61583 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-61583 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-615832018-09-11T08:55:34Z Hybrid fluorometric flow analyzer for ammonia Natchanon Amornthammarong Jaroon Jakmunee Jianzhong Li Purnendu K. Dasgupta Chemistry We describe a robust, highly sensitive instrument for the determination of ambient ammonia. The instrument uses two syringe pumps to handle three liquids. The flow configuration is a hybrid between traditional flow injection (FI) and sequential injection (SI) schemes. This hybrid flow analyzer spends ∼87% of its time in the continuous flow FI mode, providing the traditional FI advantages of high baseline stability and sensitivity. The SI fluid handling operation in the remaining time makes for flexibility and robustness. Atmospheric ammonia is collected in deionized water by a porous membrane diffusion scrubber at 0.2 L/min with quantitative collection efficiency, derivatized on-line to 1-sulfonatoisoindole, and measured by fluorometry. In the typical range for ambient ammonia (0-20 ppbv), response is linear (r2 = 0.9990) with a S/N = 3 limit of detection of 135 pptv (15 nM for 500 μL of injected NH 4+(aq)) with an inexpensive light emitting diode photodiode-based detector. Automated operation in continuously repeated, 8-min cycles over 9 days shows excellent overall precision (n = 1544 p NH3 = 5 ppbv, RSD = 3%). Precision for liquid-phase injections is even better (n = 1520, [NH4+(aq)] = 2.5 μM, RSD = 2%). The response decreases by 3.6% from 20 to 80% relative humidity. © 2006 American Chemical Society. 2018-09-11T08:55:34Z 2018-09-11T08:55:34Z 2006-03-15 Journal 00032700 2-s2.0-33645224022 10.1021/ac051950b https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645224022&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61583 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemistry |
spellingShingle |
Chemistry Natchanon Amornthammarong Jaroon Jakmunee Jianzhong Li Purnendu K. Dasgupta Hybrid fluorometric flow analyzer for ammonia |
description |
We describe a robust, highly sensitive instrument for the determination of ambient ammonia. The instrument uses two syringe pumps to handle three liquids. The flow configuration is a hybrid between traditional flow injection (FI) and sequential injection (SI) schemes. This hybrid flow analyzer spends ∼87% of its time in the continuous flow FI mode, providing the traditional FI advantages of high baseline stability and sensitivity. The SI fluid handling operation in the remaining time makes for flexibility and robustness. Atmospheric ammonia is collected in deionized water by a porous membrane diffusion scrubber at 0.2 L/min with quantitative collection efficiency, derivatized on-line to 1-sulfonatoisoindole, and measured by fluorometry. In the typical range for ambient ammonia (0-20 ppbv), response is linear (r2 = 0.9990) with a S/N = 3 limit of detection of 135 pptv (15 nM for 500 μL of injected NH 4+(aq)) with an inexpensive light emitting diode photodiode-based detector. Automated operation in continuously repeated, 8-min cycles over 9 days shows excellent overall precision (n = 1544 p NH3 = 5 ppbv, RSD = 3%). Precision for liquid-phase injections is even better (n = 1520, [NH4+(aq)] = 2.5 μM, RSD = 2%). The response decreases by 3.6% from 20 to 80% relative humidity. © 2006 American Chemical Society. |
format |
Journal |
author |
Natchanon Amornthammarong Jaroon Jakmunee Jianzhong Li Purnendu K. Dasgupta |
author_facet |
Natchanon Amornthammarong Jaroon Jakmunee Jianzhong Li Purnendu K. Dasgupta |
author_sort |
Natchanon Amornthammarong |
title |
Hybrid fluorometric flow analyzer for ammonia |
title_short |
Hybrid fluorometric flow analyzer for ammonia |
title_full |
Hybrid fluorometric flow analyzer for ammonia |
title_fullStr |
Hybrid fluorometric flow analyzer for ammonia |
title_full_unstemmed |
Hybrid fluorometric flow analyzer for ammonia |
title_sort |
hybrid fluorometric flow analyzer for ammonia |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645224022&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61583 |
_version_ |
1681425647764766720 |