Wavelet domain control of rotor vibration

This paper describes a novel application of the real-time wavelet transform in the control of rotor vibration. Vibration signal wavelet coefficients that relate to different time scales provide direct information on the system dynamic state, and can thus be used for feedback in a closed-loop control...

Full description

Saved in:
Bibliographic Details
Main Authors: M. O.T. Cole, P. S. Keogh, C. R. Burrows, M. N. Sahinkaya
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645943689&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61688
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-61688
record_format dspace
spelling th-cmuir.6653943832-616882018-09-11T08:57:05Z Wavelet domain control of rotor vibration M. O.T. Cole P. S. Keogh C. R. Burrows M. N. Sahinkaya Engineering This paper describes a novel application of the real-time wavelet transform in the control of rotor vibration. Vibration signal wavelet coefficients that relate to different time scales provide direct information on the system dynamic state, and can thus be used for feedback in a closed-loop control strategy that attenuates both transient and steady-state vibration components. Control force signals are synthesized from basis functions having a characteristic frequency and spacing interval closely matched to the rotational frequency. The control signal basis coefficients are generated by integral feedback of the wavelet coefficients such that under steady-state conditions the control forces eliminate measured rotor vibration. The controller synthesis problem is solved by iterative solution of a linear matrix inequality to obtain a gain matrix that satisfies H∞norm-bound specifications for transient vibration attenuation. It is demonstrated experimentally that wavelet coefficients from multiple scale levels can be used in direct feedback to reduce levels of transient vibration caused by instantaneous changes in unbalance. © IMechE 2006. 2018-09-11T08:57:05Z 2018-09-11T08:57:05Z 2006-02-01 Journal 09544062 2-s2.0-33645943689 10.1016/j.clinph.2006.06.586 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645943689&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61688
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Engineering
spellingShingle Engineering
M. O.T. Cole
P. S. Keogh
C. R. Burrows
M. N. Sahinkaya
Wavelet domain control of rotor vibration
description This paper describes a novel application of the real-time wavelet transform in the control of rotor vibration. Vibration signal wavelet coefficients that relate to different time scales provide direct information on the system dynamic state, and can thus be used for feedback in a closed-loop control strategy that attenuates both transient and steady-state vibration components. Control force signals are synthesized from basis functions having a characteristic frequency and spacing interval closely matched to the rotational frequency. The control signal basis coefficients are generated by integral feedback of the wavelet coefficients such that under steady-state conditions the control forces eliminate measured rotor vibration. The controller synthesis problem is solved by iterative solution of a linear matrix inequality to obtain a gain matrix that satisfies H∞norm-bound specifications for transient vibration attenuation. It is demonstrated experimentally that wavelet coefficients from multiple scale levels can be used in direct feedback to reduce levels of transient vibration caused by instantaneous changes in unbalance. © IMechE 2006.
format Journal
author M. O.T. Cole
P. S. Keogh
C. R. Burrows
M. N. Sahinkaya
author_facet M. O.T. Cole
P. S. Keogh
C. R. Burrows
M. N. Sahinkaya
author_sort M. O.T. Cole
title Wavelet domain control of rotor vibration
title_short Wavelet domain control of rotor vibration
title_full Wavelet domain control of rotor vibration
title_fullStr Wavelet domain control of rotor vibration
title_full_unstemmed Wavelet domain control of rotor vibration
title_sort wavelet domain control of rotor vibration
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645943689&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61688
_version_ 1681425667259891712