Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei
Long-distance dispersal in microbial eukaryotes has been shown to result in the establishment of populations on continental and global scales. Such "ubiquitous dispersal" has been claimed to be a general feature of microbial eukaryotes, homogenising populations over large scales. However,...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748759887&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62076 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-62076 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-620762018-09-11T09:24:19Z Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei Matthew C. Fisher William P. Hanage Sybren De Hoog Elizabeth Johnson Michael D. Smith Nicholas J. White Nongnuch Vanittanakom Biochemistry, Genetics and Molecular Biology Immunology and Microbiology Long-distance dispersal in microbial eukaryotes has been shown to result in the establishment of populations on continental and global scales. Such "ubiquitous dispersal" has been claimed to be a general feature of microbial eukaryotes, homogenising populations over large scales. However, the unprecedented sampling of opportunistic infectious pathogens created by the global AIDS pandemic has revealed that a number of important species exhibit geographic endemicity despite long-distance migration via aerially dispersed spores. One mechanism that might tend to drive such endemicity in the face of aerial dispersal is the evolution of niche-adapted genotypes when sexual reproduction is rare. Dispersal of such asexual physiological "species" will be restricted when natural habitats are heterogeneous, as a consequence of reduced adaptive variation. Using the HIV-associated endemic fungus Penicillium marneffei as our model, we measured the distribution of genetic variation over a variety of spatial scales in two host species, humans and bamboo rats. Our results show that, despite widespread aerial dispersal, isolates of P. marneffei show extensive spatial genetic structure in both host species at local and country-wide scales. We show that the evolution of the P. marneffei genome is overwhelmingly clonal, and that this is perhaps the most asexual fungus yet found. We show that clusters of genotypes are specific to discrete ecological zones and argue that asexuality has led to the evolution of niche-adapted genotypes, and is driving endemicity, by reducing this pathogen's potential to diversify in nature. © 2005 Fisher et al. 2018-09-11T09:21:38Z 2018-09-11T09:21:38Z 2005-12-01 Journal 15537374 15537366 2-s2.0-33748759887 10.1371/journal.ppat.0010020 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748759887&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62076 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology Immunology and Microbiology |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Immunology and Microbiology Matthew C. Fisher William P. Hanage Sybren De Hoog Elizabeth Johnson Michael D. Smith Nicholas J. White Nongnuch Vanittanakom Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei |
description |
Long-distance dispersal in microbial eukaryotes has been shown to result in the establishment of populations on continental and global scales. Such "ubiquitous dispersal" has been claimed to be a general feature of microbial eukaryotes, homogenising populations over large scales. However, the unprecedented sampling of opportunistic infectious pathogens created by the global AIDS pandemic has revealed that a number of important species exhibit geographic endemicity despite long-distance migration via aerially dispersed spores. One mechanism that might tend to drive such endemicity in the face of aerial dispersal is the evolution of niche-adapted genotypes when sexual reproduction is rare. Dispersal of such asexual physiological "species" will be restricted when natural habitats are heterogeneous, as a consequence of reduced adaptive variation. Using the HIV-associated endemic fungus Penicillium marneffei as our model, we measured the distribution of genetic variation over a variety of spatial scales in two host species, humans and bamboo rats. Our results show that, despite widespread aerial dispersal, isolates of P. marneffei show extensive spatial genetic structure in both host species at local and country-wide scales. We show that the evolution of the P. marneffei genome is overwhelmingly clonal, and that this is perhaps the most asexual fungus yet found. We show that clusters of genotypes are specific to discrete ecological zones and argue that asexuality has led to the evolution of niche-adapted genotypes, and is driving endemicity, by reducing this pathogen's potential to diversify in nature. © 2005 Fisher et al. |
format |
Journal |
author |
Matthew C. Fisher William P. Hanage Sybren De Hoog Elizabeth Johnson Michael D. Smith Nicholas J. White Nongnuch Vanittanakom |
author_facet |
Matthew C. Fisher William P. Hanage Sybren De Hoog Elizabeth Johnson Michael D. Smith Nicholas J. White Nongnuch Vanittanakom |
author_sort |
Matthew C. Fisher |
title |
Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei |
title_short |
Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei |
title_full |
Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei |
title_fullStr |
Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei |
title_full_unstemmed |
Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei |
title_sort |
low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen penicillium marneffei |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748759887&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62076 |
_version_ |
1681425739647287296 |