Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature

Highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles were successfully synthesized by the co-precipitation of mixtures of Ca(NO3)24H2O or Sr(NO3)2, and Na2MoO42H 2O or Na2WO42H2O dissolved in ethylene glycol at room temperature (30 °C). Phases, morphologies, atomic vibrations and optical...

Full description

Saved in:
Bibliographic Details
Main Authors: Thongtem T., Kungwankunakorn S., Kuntalue B., Phuruangrat A., Thongtem S.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-77956095577&partnerID=40&md5=af6f90f9baacf15da3397c0034aacd4f
http://cmuir.cmu.ac.th/handle/6653943832/6210
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-6210
record_format dspace
spelling th-cmuir.6653943832-62102014-08-30T03:23:58Z Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature Thongtem T. Kungwankunakorn S. Kuntalue B. Phuruangrat A. Thongtem S. Highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles were successfully synthesized by the co-precipitation of mixtures of Ca(NO3)24H2O or Sr(NO3)2, and Na2MoO42H 2O or Na2WO42H2O dissolved in ethylene glycol at room temperature (30 °C). Phases, morphologies, atomic vibrations and optical properties were analyzed by X-ray diffraction, transmission electron microscopy, Fourier transform infrared and Raman spectrophotometry, and ultraviolet-visible and photoluminescent spectroscopy. All products were proved to be MXO4 (M = Ca and Sr, and X = Mo and W) with body-centered tetragonal scheelite structures, having round nanoparticles with the average sizes of 12.06 ± 1.65, 16.40 ± 2.44, 15.49 ± 2.19, and 15.40 ± 2.30 nm for CaMoO4, SrMoO 4, CaWO4 and SrWO4, respectively. Their ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag) vibration modes were also detected - being shifted to lower wavenumbers from MMoO 4 to MWO4, due to the change of efficient atomic mass of the oscillating ions between X6+ and O2- in the [XO 4]2- complexes. Band gaps of CaMoO4, SrMoO 4, CaWO4 and SrWO4 were determined to be 5.07, 3.72, 5.40, and 4.47 eV, respectively. Photoluminescent (PL) emissions were at 414, 413, 418, and 414 nm for CaMoO4, SrMoO4, CaWO 4 and SrWO4, respectively. © 2010 Elsevier B.V. All rights reserved. 2014-08-30T03:23:58Z 2014-08-30T03:23:58Z 2010 Article 9258388 10.1016/j.jallcom.2010.07.033 JALCE http://www.scopus.com/inward/record.url?eid=2-s2.0-77956095577&partnerID=40&md5=af6f90f9baacf15da3397c0034aacd4f http://cmuir.cmu.ac.th/handle/6653943832/6210 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles were successfully synthesized by the co-precipitation of mixtures of Ca(NO3)24H2O or Sr(NO3)2, and Na2MoO42H 2O or Na2WO42H2O dissolved in ethylene glycol at room temperature (30 °C). Phases, morphologies, atomic vibrations and optical properties were analyzed by X-ray diffraction, transmission electron microscopy, Fourier transform infrared and Raman spectrophotometry, and ultraviolet-visible and photoluminescent spectroscopy. All products were proved to be MXO4 (M = Ca and Sr, and X = Mo and W) with body-centered tetragonal scheelite structures, having round nanoparticles with the average sizes of 12.06 ± 1.65, 16.40 ± 2.44, 15.49 ± 2.19, and 15.40 ± 2.30 nm for CaMoO4, SrMoO 4, CaWO4 and SrWO4, respectively. Their ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag) vibration modes were also detected - being shifted to lower wavenumbers from MMoO 4 to MWO4, due to the change of efficient atomic mass of the oscillating ions between X6+ and O2- in the [XO 4]2- complexes. Band gaps of CaMoO4, SrMoO 4, CaWO4 and SrWO4 were determined to be 5.07, 3.72, 5.40, and 4.47 eV, respectively. Photoluminescent (PL) emissions were at 414, 413, 418, and 414 nm for CaMoO4, SrMoO4, CaWO 4 and SrWO4, respectively. © 2010 Elsevier B.V. All rights reserved.
format Article
author Thongtem T.
Kungwankunakorn S.
Kuntalue B.
Phuruangrat A.
Thongtem S.
spellingShingle Thongtem T.
Kungwankunakorn S.
Kuntalue B.
Phuruangrat A.
Thongtem S.
Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature
author_facet Thongtem T.
Kungwankunakorn S.
Kuntalue B.
Phuruangrat A.
Thongtem S.
author_sort Thongtem T.
title Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature
title_short Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature
title_full Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature
title_fullStr Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature
title_full_unstemmed Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature
title_sort luminescence and absorbance of highly crystalline camoo4, srmoo4, cawo4 and srwo4 nanoparticles synthesized by co-precipitation method at room temperature
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-77956095577&partnerID=40&md5=af6f90f9baacf15da3397c0034aacd4f
http://cmuir.cmu.ac.th/handle/6653943832/6210
_version_ 1681420571024293888