The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics
The electrical properties of ceramics within the TiO2-SnO2system which exhibit spinodal decomposition were investigated under different annealing conditions. Changes in the lattice parameter and the phase evolution of the spinodal decomposition, measured in terms of the volume fraction transformed X...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=17744372263&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62156 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-62156 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-621562018-09-11T09:28:29Z The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics Wanwilai Chaisan Rattikorn Yimnirun Supon Ananta David P. Cann Chemistry Materials Science Physics and Astronomy The electrical properties of ceramics within the TiO2-SnO2system which exhibit spinodal decomposition were investigated under different annealing conditions. Changes in the lattice parameter and the phase evolution of the spinodal decomposition, measured in terms of the volume fraction transformed X(t), were examined as a function of annealing time using X-ray diffraction. The room temperature dielectric properties were measured and compared to dielectric mixing rules. Doping with pentavalent Nb was found to slow the decomposition kinetics and a high permittivity (εr> 1000) was induced. The origin of the high permittivity is linked to the formation of an electrically heterogeneous structure which is derived from the spinodal microstructure. Lastly, it was observed that Nb-doped TiO2-SnO2ceramics exhibited non-linear current-voltage behavior which can be attributed to the negative temperature coefficient of resistance effect. © 2005 Elsevier Inc. All rights reserved. 2018-09-11T09:22:50Z 2018-09-11T09:22:50Z 2005-01-01 Journal 00224596 2-s2.0-17744372263 10.1016/j.jssc.2004.11.030 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=17744372263&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62156 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemistry Materials Science Physics and Astronomy |
spellingShingle |
Chemistry Materials Science Physics and Astronomy Wanwilai Chaisan Rattikorn Yimnirun Supon Ananta David P. Cann The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics |
description |
The electrical properties of ceramics within the TiO2-SnO2system which exhibit spinodal decomposition were investigated under different annealing conditions. Changes in the lattice parameter and the phase evolution of the spinodal decomposition, measured in terms of the volume fraction transformed X(t), were examined as a function of annealing time using X-ray diffraction. The room temperature dielectric properties were measured and compared to dielectric mixing rules. Doping with pentavalent Nb was found to slow the decomposition kinetics and a high permittivity (εr> 1000) was induced. The origin of the high permittivity is linked to the formation of an electrically heterogeneous structure which is derived from the spinodal microstructure. Lastly, it was observed that Nb-doped TiO2-SnO2ceramics exhibited non-linear current-voltage behavior which can be attributed to the negative temperature coefficient of resistance effect. © 2005 Elsevier Inc. All rights reserved. |
format |
Journal |
author |
Wanwilai Chaisan Rattikorn Yimnirun Supon Ananta David P. Cann |
author_facet |
Wanwilai Chaisan Rattikorn Yimnirun Supon Ananta David P. Cann |
author_sort |
Wanwilai Chaisan |
title |
The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics |
title_short |
The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics |
title_full |
The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics |
title_fullStr |
The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics |
title_full_unstemmed |
The effects of the spinodal microstructure on the electrical properties of TiO<inf>2</inf>-SnO<inf>2</inf>ceramics |
title_sort |
effects of the spinodal microstructure on the electrical properties of tio<inf>2</inf>-sno<inf>2</inf>ceramics |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=17744372263&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62156 |
_version_ |
1681425754459471872 |