Lim's theorems for multivalued mappings in CAT(0) spaces

Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spa...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Dhompongsa, A. Kaewkhao, B. Panyanak
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744436289&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-62285
record_format dspace
spelling th-cmuir.6653943832-622852018-09-11T09:25:07Z Lim's theorems for multivalued mappings in CAT(0) spaces S. Dhompongsa A. Kaewkhao B. Panyanak Mathematics Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved. 2018-09-11T09:25:07Z 2018-09-11T09:25:07Z 2005-12-15 Journal 0022247X 2-s2.0-27744436289 10.1016/j.jmaa.2005.03.055 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744436289&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
S. Dhompongsa
A. Kaewkhao
B. Panyanak
Lim's theorems for multivalued mappings in CAT(0) spaces
description Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved.
format Journal
author S. Dhompongsa
A. Kaewkhao
B. Panyanak
author_facet S. Dhompongsa
A. Kaewkhao
B. Panyanak
author_sort S. Dhompongsa
title Lim's theorems for multivalued mappings in CAT(0) spaces
title_short Lim's theorems for multivalued mappings in CAT(0) spaces
title_full Lim's theorems for multivalued mappings in CAT(0) spaces
title_fullStr Lim's theorems for multivalued mappings in CAT(0) spaces
title_full_unstemmed Lim's theorems for multivalued mappings in CAT(0) spaces
title_sort lim's theorems for multivalued mappings in cat(0) spaces
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744436289&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285
_version_ 1681425778297798656