Lim's theorems for multivalued mappings in CAT(0) spaces
Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744436289&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-62285 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-622852018-09-11T09:25:07Z Lim's theorems for multivalued mappings in CAT(0) spaces S. Dhompongsa A. Kaewkhao B. Panyanak Mathematics Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved. 2018-09-11T09:25:07Z 2018-09-11T09:25:07Z 2005-12-15 Journal 0022247X 2-s2.0-27744436289 10.1016/j.jmaa.2005.03.055 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744436289&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics S. Dhompongsa A. Kaewkhao B. Panyanak Lim's theorems for multivalued mappings in CAT(0) spaces |
description |
Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved. |
format |
Journal |
author |
S. Dhompongsa A. Kaewkhao B. Panyanak |
author_facet |
S. Dhompongsa A. Kaewkhao B. Panyanak |
author_sort |
S. Dhompongsa |
title |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_short |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_full |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_fullStr |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_full_unstemmed |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_sort |
lim's theorems for multivalued mappings in cat(0) spaces |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744436289&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285 |
_version_ |
1681425778297798656 |