Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles
© 2018 King Saud University In this work, flame-spray-made Fe-doped SnO2 nanoparticles were comprehensively investigated for acetylene (C2H2) detection and the roles of Fe dopants on sensing mechanisms were explored. The sensing material properties were evaluated by X-ray diffraction, electron micro...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052969227&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62619 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-62619 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-626192018-11-29T07:37:57Z Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles Jirasak Sukunta Anurat Wisitsoraat Adisorn Tuantranont Kata Jaruwongrungsee Sukon Phanichphant Chaikarn Liewhiran Chemical Engineering Chemistry © 2018 King Saud University In this work, flame-spray-made Fe-doped SnO2 nanoparticles were comprehensively investigated for acetylene (C2H2) detection and the roles of Fe dopants on sensing mechanisms were explored. The sensing material properties were evaluated by X-ray diffraction, electron microscopy, N2 adsorption-desorption analysis, X-ray absorption/photoemission spectroscopy and UV–visible spectroscopy. The structural characterizations confirmed that the nanoparticles had a tetragonal nanocrystalline SnO2 phase and Fe3+ dopant species formed a solid solution with SnO2 lattice. The sensors were measured towards 0.15–3 vol% C2H2 in dry air at various working temperatures (200–350 °C). Gas-sensing data demonstrated that the optimal Fe doping level of 0.1 wt% led to a substantially enhanced response of 748.7 toward 3 vol% C2H2 with a decent response time of 2.5 s at the optimal working temperature of 300 °C. Furthermore, the optimal SnO2 sensor demonstrated high C2H2 selectivity against C2H5OH, NO2, H2, NH3, CO2, NO, H2S, CH4, C2H4O, C2H4 and N2O. Additional detailed analyses suggested that Fe3+ species played catalytic roles for enhancing C2H2 dissociation and oxidation. Thus, the Fe-doped SnO2 sensors were highly promising for selective and sensitive detections of acetylene in industrial applications. 2018-11-29T07:36:03Z 2018-11-29T07:36:03Z 2018-01-01 Journal 18785352 2-s2.0-85052969227 10.1016/j.arabjc.2018.08.013 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052969227&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62619 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemical Engineering Chemistry |
spellingShingle |
Chemical Engineering Chemistry Jirasak Sukunta Anurat Wisitsoraat Adisorn Tuantranont Kata Jaruwongrungsee Sukon Phanichphant Chaikarn Liewhiran Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles |
description |
© 2018 King Saud University In this work, flame-spray-made Fe-doped SnO2 nanoparticles were comprehensively investigated for acetylene (C2H2) detection and the roles of Fe dopants on sensing mechanisms were explored. The sensing material properties were evaluated by X-ray diffraction, electron microscopy, N2 adsorption-desorption analysis, X-ray absorption/photoemission spectroscopy and UV–visible spectroscopy. The structural characterizations confirmed that the nanoparticles had a tetragonal nanocrystalline SnO2 phase and Fe3+ dopant species formed a solid solution with SnO2 lattice. The sensors were measured towards 0.15–3 vol% C2H2 in dry air at various working temperatures (200–350 °C). Gas-sensing data demonstrated that the optimal Fe doping level of 0.1 wt% led to a substantially enhanced response of 748.7 toward 3 vol% C2H2 with a decent response time of 2.5 s at the optimal working temperature of 300 °C. Furthermore, the optimal SnO2 sensor demonstrated high C2H2 selectivity against C2H5OH, NO2, H2, NH3, CO2, NO, H2S, CH4, C2H4O, C2H4 and N2O. Additional detailed analyses suggested that Fe3+ species played catalytic roles for enhancing C2H2 dissociation and oxidation. Thus, the Fe-doped SnO2 sensors were highly promising for selective and sensitive detections of acetylene in industrial applications. |
format |
Journal |
author |
Jirasak Sukunta Anurat Wisitsoraat Adisorn Tuantranont Kata Jaruwongrungsee Sukon Phanichphant Chaikarn Liewhiran |
author_facet |
Jirasak Sukunta Anurat Wisitsoraat Adisorn Tuantranont Kata Jaruwongrungsee Sukon Phanichphant Chaikarn Liewhiran |
author_sort |
Jirasak Sukunta |
title |
Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles |
title_short |
Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles |
title_full |
Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles |
title_fullStr |
Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles |
title_full_unstemmed |
Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO<inf>2</inf> nanoparticles |
title_sort |
mechanistic roles of substitutional fe dopants on catalytic acetylene-sensing process of flame-made sno<inf>2</inf> nanoparticles |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052969227&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62619 |
_version_ |
1681425840921903104 |