Hamming and Symbol-Pair Distances of Repeated-Root Constacyclic Codes of Prime Power Lengths over Fpm + uFpm
IEEE The ring R = Fpm + uFpm has precisely pm(pm–1) units, which are of the forms γ and α+uβ, where 0 ≠ α,β,γ ∈ Fpm. Using generator polynomial structures of constacyclic codes of length ps over R, the...
Saved in:
Main Authors: | , , , |
---|---|
格式: | 雜誌 |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052869785&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62650 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
總結: | IEEE The ring R = Fpm + uFpm has precisely pm(pm–1) units, which are of the forms γ and α+uβ, where 0 ≠ α,β,γ ∈ Fpm. Using generator polynomial structures of constacyclic codes of length ps over R, the Hamming and symbol-pair distance distributions of all such codes are completely determined. As examples, we provide some good codes with better parameters than the known ones. |
---|