Type 2 constacyclic codes over [Formula presented] of oddly even length

© 2018 Elsevier B.V. Let [Formula presented] be a finite field of cardinality [Formula presented], [Formula presented] be an odd positive integer, and denote [Formula presented]. Let [Formula presented]. Then [Formula presented]-constacyclic codes over [Formula presented] are called constacyclic cod...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan Cao, Yonglin Cao, Hai Q. Dinh, Fang Wei Fu, Yun Gao, Songsak Sriboonchitta
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85056186039&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/62929
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-62929
record_format dspace
spelling th-cmuir.6653943832-629292018-12-14T03:41:35Z Type 2 constacyclic codes over [Formula presented] of oddly even length Yuan Cao Yonglin Cao Hai Q. Dinh Fang Wei Fu Yun Gao Songsak Sriboonchitta Mathematics © 2018 Elsevier B.V. Let [Formula presented] be a finite field of cardinality [Formula presented], [Formula presented] be an odd positive integer, and denote [Formula presented]. Let [Formula presented]. Then [Formula presented]-constacyclic codes over [Formula presented] are called constacyclic codes over [Formula presented] of Type 2. In this paper, an explicit representation and a complete description for all distinct [Formula presented]-constacyclic codes over [Formula presented] of length [Formula presented] and their dual codes are given. Moreover, explicit formulas for the number of codewords in each code and the number of all such codes are provided respectively. In particular, all distinct self-dual [Formula presented]-constacyclic codes over [Formula presented] of length [Formula presented] are presented precisely. In addition, a complement to a result in Cao et al. (2017) is given. 2018-12-14T03:41:35Z 2018-12-14T03:41:35Z 2019-02-01 Journal 0012365X 2-s2.0-85056186039 10.1016/j.disc.2018.10.005 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85056186039&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62929
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Yuan Cao
Yonglin Cao
Hai Q. Dinh
Fang Wei Fu
Yun Gao
Songsak Sriboonchitta
Type 2 constacyclic codes over [Formula presented] of oddly even length
description © 2018 Elsevier B.V. Let [Formula presented] be a finite field of cardinality [Formula presented], [Formula presented] be an odd positive integer, and denote [Formula presented]. Let [Formula presented]. Then [Formula presented]-constacyclic codes over [Formula presented] are called constacyclic codes over [Formula presented] of Type 2. In this paper, an explicit representation and a complete description for all distinct [Formula presented]-constacyclic codes over [Formula presented] of length [Formula presented] and their dual codes are given. Moreover, explicit formulas for the number of codewords in each code and the number of all such codes are provided respectively. In particular, all distinct self-dual [Formula presented]-constacyclic codes over [Formula presented] of length [Formula presented] are presented precisely. In addition, a complement to a result in Cao et al. (2017) is given.
format Journal
author Yuan Cao
Yonglin Cao
Hai Q. Dinh
Fang Wei Fu
Yun Gao
Songsak Sriboonchitta
author_facet Yuan Cao
Yonglin Cao
Hai Q. Dinh
Fang Wei Fu
Yun Gao
Songsak Sriboonchitta
author_sort Yuan Cao
title Type 2 constacyclic codes over [Formula presented] of oddly even length
title_short Type 2 constacyclic codes over [Formula presented] of oddly even length
title_full Type 2 constacyclic codes over [Formula presented] of oddly even length
title_fullStr Type 2 constacyclic codes over [Formula presented] of oddly even length
title_full_unstemmed Type 2 constacyclic codes over [Formula presented] of oddly even length
title_sort type 2 constacyclic codes over [formula presented] of oddly even length
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85056186039&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/62929
_version_ 1681425897675030528