Effect of deformation methods on the accuracy of deformable image registration from kilovoltage CT to tomotherapy megavoltage CT
© The Author(s) 2019. Introduction: The registration accuracy of megavoltage computed tomography images is limited by low image contrast when compared to that of kilovoltage computed tomography images. Such issues may degrade the deformable image registration accuracy. This study evaluates the defor...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2019
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85062169457&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/63583 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | © The Author(s) 2019. Introduction: The registration accuracy of megavoltage computed tomography images is limited by low image contrast when compared to that of kilovoltage computed tomography images. Such issues may degrade the deformable image registration accuracy. This study evaluates the deformable image registration from kilovoltage to megavoltage images when using different deformation methods and assessing nasopharyngeal carcinoma patient images. Methods: The kilovoltage and the megavoltage images from the first day and the 20th fractions of the treatment day of 12 patients with nasopharyngeal carcinoma were used to evaluate the deformable image registration application. The deformable image registration image procedures were classified into 3 groups, including kilovoltage to kilovoltage, megavoltage to megavoltage, and kilovoltage to megavoltage. Three deformable image registration methods were employed using the deformable image registration and adaptive radiotherapy software. The validation was compared by volume-based, intensity-based, and deformation field analyses. Results: The use of different deformation methods greatly affected the deformable image registration accuracy from kilovoltage to megavoltage. The asymmetric transformation with the demon method was significantly better than other methods and illustrated satisfactory value for adaptive applications. The deformable image registration accuracy from kilovoltage to megavoltage showed no significant difference from the kilovoltage to kilovoltage images when using the appropriate method of registration. Conclusions: The choice of deformation method should be considered when applying the deformable image registration from kilovoltage to megavoltage images. The deformable image registration accuracy from kilovoltage to megavoltage revealed a good agreement in terms of intensity-based, volume-based, and deformation field analyses and showed clinically useful methods for nasopharyngeal carcinoma adaptive radiotherapy in tomotherapy applications. |
---|