A metric space of subcopulas — An approach via Hausdorff distance

© 2019 In this work, we define a distance function on the set of bivariate subcopulas to generate a compact metric space. Moreover, the copula space equipped with the uniform distance is essentially a metric subspace of this subcopula space. We also characterize the convergence in this space, and pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Jumpol Rachasingho, Santi Tasena
Format: Journal
Published: 2019
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060721350&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/63629
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-63629
record_format dspace
spelling th-cmuir.6653943832-636292019-03-18T02:24:00Z A metric space of subcopulas — An approach via Hausdorff distance Jumpol Rachasingho Santi Tasena Computer Science Mathematics © 2019 In this work, we define a distance function on the set of bivariate subcopulas to generate a compact metric space. Moreover, the copula space equipped with the uniform distance is essentially a metric subspace of this subcopula space. We also characterize the convergence in this space, and provide the interrelationship with the convergence of the distribution functions. 2019-03-18T02:22:11Z 2019-03-18T02:22:11Z 2019-01-01 Journal 01650114 2-s2.0-85060721350 10.1016/j.fss.2019.01.015 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060721350&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/63629
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Computer Science
Mathematics
spellingShingle Computer Science
Mathematics
Jumpol Rachasingho
Santi Tasena
A metric space of subcopulas — An approach via Hausdorff distance
description © 2019 In this work, we define a distance function on the set of bivariate subcopulas to generate a compact metric space. Moreover, the copula space equipped with the uniform distance is essentially a metric subspace of this subcopula space. We also characterize the convergence in this space, and provide the interrelationship with the convergence of the distribution functions.
format Journal
author Jumpol Rachasingho
Santi Tasena
author_facet Jumpol Rachasingho
Santi Tasena
author_sort Jumpol Rachasingho
title A metric space of subcopulas — An approach via Hausdorff distance
title_short A metric space of subcopulas — An approach via Hausdorff distance
title_full A metric space of subcopulas — An approach via Hausdorff distance
title_fullStr A metric space of subcopulas — An approach via Hausdorff distance
title_full_unstemmed A metric space of subcopulas — An approach via Hausdorff distance
title_sort metric space of subcopulas — an approach via hausdorff distance
publishDate 2019
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060721350&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/63629
_version_ 1681425930902306816