On the Hamming distances of repeated-root constacyclic codes of length 4p <sup>s</sup>

© 2019 Elsevier B.V. Let p be an odd prime, s, m be positive integers, γ,λ be nonzero elements of the finite field F p m such that γ p s =λ. In this paper, we show that, for any positive integer η, the Hamming distances of all repeated-root λ-constacyclic codes of length ηp s can be determined by...

Full description

Saved in:
Bibliographic Details
Main Authors: Hai Q. Dinh, Xiaoqiang Wang, Hongwei Liu, Songsak Sriboonchitta
Format: Journal
Published: 2019
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061557336&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/63679
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2019 Elsevier B.V. Let p be an odd prime, s, m be positive integers, γ,λ be nonzero elements of the finite field F p m such that γ p s =λ. In this paper, we show that, for any positive integer η, the Hamming distances of all repeated-root λ-constacyclic codes of length ηp s can be determined by those of certain simple-root γ-constacyclic codes of length η. Using this result, Hamming distances of all constacyclic codes of length 4p s are obtained. As an application, we identify all MDS λ-constacyclic codes of length 4p s .