Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation
Gold nanoparticles have been proved to act as oxidation catalyst for glucose oxidation, offering a “chemical” synthetic route to gluconic acid and gluconates - nowadays commercially produced by an enzyme catalyzed oxidation. Our investigations of the gold catalyzed oxidation route showed that gold n...
Saved in:
Main Authors: | , |
---|---|
Format: | บทความวารสาร |
Language: | English |
Published: |
Science Faculty of Chiang Mai University
2019
|
Online Access: | http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=7069 http://cmuir.cmu.ac.th/jspui/handle/6653943832/63774 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-63774 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-637742019-05-07T09:57:17Z Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation Jitrayut Jitonnom Christoph Sontag Gold nanoparticles have been proved to act as oxidation catalyst for glucose oxidation, offering a “chemical” synthetic route to gluconic acid and gluconates - nowadays commercially produced by an enzyme catalyzed oxidation. Our investigations of the gold catalyzed oxidation route showed that gold nanoparticles produced by a modified Turkevich method have a high activity for this pseudo-homogenous catalytic reaction. Under mild reaction conditions, glucose could be oxidized in good yields (~70%) and the resulting gluconate could be isolated by column chromatography and precipitation as calcium salt. The catalytic oxidation reaction was found to follow the first-order kinetic with a rate constant of 4.95 h-1, in good agreement with previous finding. The underlying reaction mechanism is discussed, assuming that the formation of a gold-glucose cluster intermediate is a key catalytic step. Several structures of the gold-glucose intermediates were examined using density functional theory methods. The molecular behavior of glucose adsorption in gold colloid solution is present. 2019-05-07T09:57:17Z 2019-05-07T09:57:17Z 2016 บทความวารสาร 0125-2526 http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=7069 http://cmuir.cmu.ac.th/jspui/handle/6653943832/63774 Eng Science Faculty of Chiang Mai University |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
Gold nanoparticles have been proved to act as oxidation catalyst for glucose oxidation, offering a “chemical” synthetic route to gluconic acid and gluconates - nowadays commercially produced by an enzyme catalyzed oxidation. Our investigations of the gold catalyzed oxidation route showed that gold nanoparticles produced by a modified Turkevich method have a high activity for this pseudo-homogenous catalytic reaction. Under mild reaction conditions, glucose could be oxidized in good yields (~70%) and the resulting gluconate could be isolated by column chromatography and precipitation as calcium salt. The catalytic oxidation reaction was found to follow the first-order kinetic with a rate constant of 4.95 h-1, in good agreement with previous finding. The underlying reaction mechanism is discussed, assuming that the formation of a gold-glucose cluster intermediate is a key catalytic step. Several structures of the gold-glucose intermediates were examined using density functional theory methods. The molecular behavior of glucose adsorption in gold colloid solution is present. |
format |
บทความวารสาร |
author |
Jitrayut Jitonnom Christoph Sontag |
spellingShingle |
Jitrayut Jitonnom Christoph Sontag Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation |
author_facet |
Jitrayut Jitonnom Christoph Sontag |
author_sort |
Jitrayut Jitonnom |
title |
Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation |
title_short |
Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation |
title_full |
Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation |
title_fullStr |
Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation |
title_full_unstemmed |
Catalytic Oxidation of Glucose with Hydrogen Peroxide and Colloidal Gold as Pseudo-Homogenous Catalyst: A Combined Experimental and Theoretical Investigation |
title_sort |
catalytic oxidation of glucose with hydrogen peroxide and colloidal gold as pseudo-homogenous catalyst: a combined experimental and theoretical investigation |
publisher |
Science Faculty of Chiang Mai University |
publishDate |
2019 |
url |
http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=7069 http://cmuir.cmu.ac.th/jspui/handle/6653943832/63774 |
_version_ |
1681425957775212544 |