Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation
The performances of fuel cell employing a bipolar plate with different gas-flow-field patterns for proton exchange membrane fuel cell (PEMFC) were simulated using higher-order polynomials (h-p) finite element method (h-p FEM). The patterns of each model were as follows: the straight pipe on both sid...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | บทความวารสาร |
Language: | English |
Published: |
Science Faculty of Chiang Mai University
2019
|
Online Access: | http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=8493 http://cmuir.cmu.ac.th/jspui/handle/6653943832/63988 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-63988 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-639882019-05-07T09:59:41Z Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation Lirada Saraihom Kridsanapan Srimongkon Chesta Ruttanapun Apishok Tangtrakarn Narit Faibut Pikaned Uppachai Madsakorn Towannang Vittaya Amornkitbamrung The performances of fuel cell employing a bipolar plate with different gas-flow-field patterns for proton exchange membrane fuel cell (PEMFC) were simulated using higher-order polynomials (h-p) finite element method (h-p FEM). The patterns of each model were as follows: the straight pipe on both sides (Model 1), the serpentine flow-field for anode and the straight pipe for cathode (Model 2), the slotted serpentine for anode and the straight pipe for cathode (Model 3), and the serpentine on both sides (Model 4). It was found that as the cell temperature increased, the diffusion velocity of reactant gases and Maxwell-Stefan-diffusion coefficient of proton dramatically increased. The performance of PEMFC reached the highest value as the flow velocity of reactant gases and the diffusion coefficient of proton through membrane were optimized at the temperature of 80 oC. The most efficient flow-field pattern in this study is Model 2. 2019-05-07T09:59:41Z 2019-05-07T09:59:41Z 2017 บทความวารสาร 0125-2526 http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=8493 http://cmuir.cmu.ac.th/jspui/handle/6653943832/63988 Eng Science Faculty of Chiang Mai University |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
The performances of fuel cell employing a bipolar plate with different gas-flow-field patterns for proton exchange membrane fuel cell (PEMFC) were simulated using higher-order polynomials (h-p) finite element method (h-p FEM). The patterns of each model were as follows: the straight pipe on both sides (Model 1), the serpentine flow-field for anode and the straight pipe for cathode (Model 2), the slotted serpentine for anode and the straight pipe for cathode (Model 3), and the serpentine on both sides (Model 4). It was found that as the cell temperature increased, the diffusion velocity of reactant gases and Maxwell-Stefan-diffusion coefficient of proton dramatically increased. The performance of PEMFC reached the highest value as the flow velocity of reactant gases and the diffusion coefficient of proton through membrane were optimized at the temperature of 80 oC. The most efficient flow-field pattern in this study is Model 2. |
format |
บทความวารสาร |
author |
Lirada Saraihom Kridsanapan Srimongkon Chesta Ruttanapun Apishok Tangtrakarn Narit Faibut Pikaned Uppachai Madsakorn Towannang Vittaya Amornkitbamrung |
spellingShingle |
Lirada Saraihom Kridsanapan Srimongkon Chesta Ruttanapun Apishok Tangtrakarn Narit Faibut Pikaned Uppachai Madsakorn Towannang Vittaya Amornkitbamrung Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation |
author_facet |
Lirada Saraihom Kridsanapan Srimongkon Chesta Ruttanapun Apishok Tangtrakarn Narit Faibut Pikaned Uppachai Madsakorn Towannang Vittaya Amornkitbamrung |
author_sort |
Lirada Saraihom |
title |
Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation |
title_short |
Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation |
title_full |
Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation |
title_fullStr |
Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation |
title_full_unstemmed |
Effect of Cell Temperatures and Flow-Field Patterns of Bipolar Plate Electrodes on the Performance of Proton Exchange Membrane Fuel Cell by Computational Simulation |
title_sort |
effect of cell temperatures and flow-field patterns of bipolar plate electrodes on the performance of proton exchange membrane fuel cell by computational simulation |
publisher |
Science Faculty of Chiang Mai University |
publishDate |
2019 |
url |
http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=8493 http://cmuir.cmu.ac.th/jspui/handle/6653943832/63988 |
_version_ |
1681425997750075392 |