Tight-binding simulation of core impact on structural and optical properties of InN/GaN core/shell nanocrystals
The atomistic tight-binding simulation on InN/GaN core/shell nanocrystals is mainly reported with the objective to understand the influence of the core sizes on the structural and optical properties. Computed by tight-binding theory, the single-particle spectra, excitonic states, atomistic character...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | บทความวารสาร |
اللغة: | English |
منشور في: |
Science Faculty of Chiang Mai University
2019
|
الوصول للمادة أونلاين: | http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=8991 http://cmuir.cmu.ac.th/jspui/handle/6653943832/64102 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chiang Mai University |
اللغة: | English |
الملخص: | The atomistic tight-binding simulation on InN/GaN core/shell nanocrystals is mainly reported with the objective to understand the influence of the core sizes on the structural and optical properties. Computed by tight-binding theory, the single-particle spectra, excitonic states, atomistic characters, carrier overlaps, radiative lifetimes, and oscillation strengths are numerically analyzed as a function of core diameters. The detailed calculations are significantly sensitive with the core diameters. With the increasing InN core diameters, the atomistic transformations of the atomistic characters in the first-two hole states are interestingly presented, thus leading to a significant change in the structural and optical properties of InN/GaN core/shell nanocrystals. The proficient manipulation of these numerical results is considerably concluded by changing the core dimensions. The principle of core impact on the structural and optical properties of InN/GaN core/shell nanocrystals will be a valuable guideline to fabricate several electronic nanodevices. |
---|