Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1
© 2019 Background: Plastic waste is a serious problem because it is difficult to degrade, thereby leading to global environment problems. Poly(lactic acid)(PLA)is a biodegradable aliphatic polyester derived from renewable resources, and it can be degraded by various enzymes produced by microorganism...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2019
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065887289&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/65360 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-65360 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-653602019-08-05T04:38:06Z Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1 Titiporn Panyachanakul Bodeesorn Sorachart Saisamorn Lumyong Wanlapa Lorliam Vichien Kitpreechavanich Sukhumaporn Krajangsang Biochemistry, Genetics and Molecular Biology Immunology and Microbiology © 2019 Background: Plastic waste is a serious problem because it is difficult to degrade, thereby leading to global environment problems. Poly(lactic acid)(PLA)is a biodegradable aliphatic polyester derived from renewable resources, and it can be degraded by various enzymes produced by microorganisms. This study focused on the scale-up and evaluated the bioprocess of PLA degradation by a crude microbial enzyme produced by Actinomadura keratinilytica strain T16-1 in a 5 L stirred tank bioreactor. Results: PLA degradation after 72 h in a 5 L bioreactor by using the enzyme of the strain T16-1 under controlled pH conditions resulted in lactic acid titers (mg/L)of 16,651 mg/L and a conversion efficiency of 89% at a controlled pH of 8.0. However, the PLA degradation process inadvertently produced lactic acid as a potential inhibitor, as shown in our experiments at various concentrations of lactic acid. Therefore, the dialysis method was performed to reduce the concentration of lactic acid. The experiment with a dialysis bag achieved PLA degradation by weight loss of 99.93%, whereas the one without dialysis achieved a degradation of less than approximately 14.75%. Therefore, the dialysis method was applied to degrade a commercial PLA material (tray)with a conversion efficiency of 32%, which was 6-fold more than that without dialysis. Conclusions: This is the first report demonstrating the scale-up of PLA degradation in a 5 L bioreactor and evaluating a potential method for enhancing PLA degradation efficiency. How to cite: Panyachanakul T, Sorachart B, Lumyong S, et al. Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.04.005 2019-08-05T04:32:09Z 2019-08-05T04:32:09Z 2019-07-01 Journal 07173458 2-s2.0-85065887289 10.1016/j.ejbt.2019.04.005 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065887289&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/65360 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology Immunology and Microbiology |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Immunology and Microbiology Titiporn Panyachanakul Bodeesorn Sorachart Saisamorn Lumyong Wanlapa Lorliam Vichien Kitpreechavanich Sukhumaporn Krajangsang Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1 |
description |
© 2019 Background: Plastic waste is a serious problem because it is difficult to degrade, thereby leading to global environment problems. Poly(lactic acid)(PLA)is a biodegradable aliphatic polyester derived from renewable resources, and it can be degraded by various enzymes produced by microorganisms. This study focused on the scale-up and evaluated the bioprocess of PLA degradation by a crude microbial enzyme produced by Actinomadura keratinilytica strain T16-1 in a 5 L stirred tank bioreactor. Results: PLA degradation after 72 h in a 5 L bioreactor by using the enzyme of the strain T16-1 under controlled pH conditions resulted in lactic acid titers (mg/L)of 16,651 mg/L and a conversion efficiency of 89% at a controlled pH of 8.0. However, the PLA degradation process inadvertently produced lactic acid as a potential inhibitor, as shown in our experiments at various concentrations of lactic acid. Therefore, the dialysis method was performed to reduce the concentration of lactic acid. The experiment with a dialysis bag achieved PLA degradation by weight loss of 99.93%, whereas the one without dialysis achieved a degradation of less than approximately 14.75%. Therefore, the dialysis method was applied to degrade a commercial PLA material (tray)with a conversion efficiency of 32%, which was 6-fold more than that without dialysis. Conclusions: This is the first report demonstrating the scale-up of PLA degradation in a 5 L bioreactor and evaluating a potential method for enhancing PLA degradation efficiency. How to cite: Panyachanakul T, Sorachart B, Lumyong S, et al. Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.04.005 |
format |
Journal |
author |
Titiporn Panyachanakul Bodeesorn Sorachart Saisamorn Lumyong Wanlapa Lorliam Vichien Kitpreechavanich Sukhumaporn Krajangsang |
author_facet |
Titiporn Panyachanakul Bodeesorn Sorachart Saisamorn Lumyong Wanlapa Lorliam Vichien Kitpreechavanich Sukhumaporn Krajangsang |
author_sort |
Titiporn Panyachanakul |
title |
Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1 |
title_short |
Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1 |
title_full |
Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1 |
title_fullStr |
Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1 |
title_full_unstemmed |
Development of biodegradation process for Poly(DL-lactic acid)degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1 |
title_sort |
development of biodegradation process for poly(dl-lactic acid)degradation by crude enzyme produced by actinomadura keratinilytica strain t16-1 |
publishDate |
2019 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065887289&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/65360 |
_version_ |
1681426254139490304 |