Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The physical and chemical properties of polymorphs of iron oxides are utilized for electronic, energy, and biomedical applications. To design a functional material with arresting interplay at the interfaces and boundaries between polymorphs of...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Journal |
Published: |
2019
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066080447&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/65616 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-65616 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-656162019-08-05T04:43:39Z Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites Narumon Lertcumfu Farheen N. Sayed Sharmila N. Shirodkar Sruthi Radhakrishnana Avanish Mishra Gobwute Rujijanagul Abhishek K. Singh Boris I. Yakobson Chandra S. Tiwary Pulickel M. Ajayan Engineering Materials Science Physics and Astronomy © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The physical and chemical properties of polymorphs of iron oxides are utilized for electronic, energy, and biomedical applications. To design a functional material with arresting interplay at the interfaces and boundaries between polymorphs of iron oxide (Fe3O4 – magnetite with Fe2O3 – hematite), two different approaches of synthesis are adopted, namely, mechanical mixing and in situ growth. Unlike mechanically mixed composites, the in situ-synthesized composites show the development of a highly distinct non-stoichiometric, Fe21.34O32 phase at the boundary. The atomically diffused composition at boundary is found to govern the fourfold increase in conductivity. By varying the ratio of constituent iron oxide polymorphs, the dielectric constant can be tuned and is found to be highly frequency dependent with minimum loss in tan δ plot. The inherent ferromagnetism of Fe3O4 reveals to be retained in composite samples. 2019-08-05T04:37:22Z 2019-08-05T04:37:22Z 2019-01-01 Journal 18626319 18626300 2-s2.0-85066080447 10.1002/pssa.201801004 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066080447&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/65616 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Engineering Materials Science Physics and Astronomy |
spellingShingle |
Engineering Materials Science Physics and Astronomy Narumon Lertcumfu Farheen N. Sayed Sharmila N. Shirodkar Sruthi Radhakrishnana Avanish Mishra Gobwute Rujijanagul Abhishek K. Singh Boris I. Yakobson Chandra S. Tiwary Pulickel M. Ajayan Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites |
description |
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The physical and chemical properties of polymorphs of iron oxides are utilized for electronic, energy, and biomedical applications. To design a functional material with arresting interplay at the interfaces and boundaries between polymorphs of iron oxide (Fe3O4 – magnetite with Fe2O3 – hematite), two different approaches of synthesis are adopted, namely, mechanical mixing and in situ growth. Unlike mechanically mixed composites, the in situ-synthesized composites show the development of a highly distinct non-stoichiometric, Fe21.34O32 phase at the boundary. The atomically diffused composition at boundary is found to govern the fourfold increase in conductivity. By varying the ratio of constituent iron oxide polymorphs, the dielectric constant can be tuned and is found to be highly frequency dependent with minimum loss in tan δ plot. The inherent ferromagnetism of Fe3O4 reveals to be retained in composite samples. |
format |
Journal |
author |
Narumon Lertcumfu Farheen N. Sayed Sharmila N. Shirodkar Sruthi Radhakrishnana Avanish Mishra Gobwute Rujijanagul Abhishek K. Singh Boris I. Yakobson Chandra S. Tiwary Pulickel M. Ajayan |
author_facet |
Narumon Lertcumfu Farheen N. Sayed Sharmila N. Shirodkar Sruthi Radhakrishnana Avanish Mishra Gobwute Rujijanagul Abhishek K. Singh Boris I. Yakobson Chandra S. Tiwary Pulickel M. Ajayan |
author_sort |
Narumon Lertcumfu |
title |
Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites |
title_short |
Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites |
title_full |
Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites |
title_fullStr |
Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites |
title_full_unstemmed |
Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites |
title_sort |
structure-dependent electrical and magnetic properties of iron oxide composites |
publishDate |
2019 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066080447&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/65616 |
_version_ |
1681426302056267776 |