Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉

© 2019 Elsevier B.V. Let R=GR(pe,m)[u]∕〈uk〉 be a finite commutative ring for a prime p and any positive integers e,m and k. In this paper, we derive the explicit representation of cyclic codes over the ring R of length n, where n and p are coprime. We also discuss the dual of such cyclic codes over...

Full description

Saved in:
Bibliographic Details
Main Authors: Hai Q. Dinh, Abhay Kumar Singh, Pratyush Kumar, Songsak Sriboonchitta
Format: Journal
Published: 2019
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068585212&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/65704
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-65704
record_format dspace
spelling th-cmuir.6653943832-657042019-08-05T04:39:49Z Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉 Hai Q. Dinh Abhay Kumar Singh Pratyush Kumar Songsak Sriboonchitta Mathematics © 2019 Elsevier B.V. Let R=GR(pe,m)[u]∕〈uk〉 be a finite commutative ring for a prime p and any positive integers e,m and k. In this paper, we derive the explicit representation of cyclic codes over the ring R of length n, where n and p are coprime. We also discuss the dual of such cyclic codes over the ring R and give a sufficient condition for the codes to be self-dual. Moreover, we study quasi-cyclic codes of length kn and index k over the ring R, and obtain some good codes satisfying the bound given in Dougherty and Shiromoto (2000) over the ring Z9 as an example. 2019-08-05T04:39:49Z 2019-08-05T04:39:49Z 2019-01-01 Journal 0012365X 2-s2.0-85068585212 10.1016/j.disc.2019.05.036 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068585212&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/65704
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Hai Q. Dinh
Abhay Kumar Singh
Pratyush Kumar
Songsak Sriboonchitta
Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉
description © 2019 Elsevier B.V. Let R=GR(pe,m)[u]∕〈uk〉 be a finite commutative ring for a prime p and any positive integers e,m and k. In this paper, we derive the explicit representation of cyclic codes over the ring R of length n, where n and p are coprime. We also discuss the dual of such cyclic codes over the ring R and give a sufficient condition for the codes to be self-dual. Moreover, we study quasi-cyclic codes of length kn and index k over the ring R, and obtain some good codes satisfying the bound given in Dougherty and Shiromoto (2000) over the ring Z9 as an example.
format Journal
author Hai Q. Dinh
Abhay Kumar Singh
Pratyush Kumar
Songsak Sriboonchitta
author_facet Hai Q. Dinh
Abhay Kumar Singh
Pratyush Kumar
Songsak Sriboonchitta
author_sort Hai Q. Dinh
title Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉
title_short Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉
title_full Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉
title_fullStr Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉
title_full_unstemmed Cyclic codes over the ring GR(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉
title_sort cyclic codes over the ring gr(p<sup>e</sup>,m)[u]∕〈u<sup>k</sup>〉
publishDate 2019
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068585212&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/65704
_version_ 1681426318430830592