Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends

An objective of this work was to investigate kinetic information of a thermal degradation of polystyrene (PS) and high-density polyethylene (HDPE) blends under a pyrolysis atmosphere at different mixture compositions, using thermogravimetric analysis, operated non-isothermally, and model-free method...

Full description

Saved in:
Bibliographic Details
Main Authors: Kasawat Tippaha, Nichaphat Jittangkoon, Parimanan Cherntongchai
Language:English
Published: Science Faculty of Chiang Mai University 2019
Subjects:
Online Access:http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6724
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66087
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-66087
record_format dspace
spelling th-cmuir.6653943832-660872019-08-21T09:18:21Z Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends Kasawat Tippaha Nichaphat Jittangkoon Parimanan Cherntongchai thermal degradation polystyrene high-density polyethylene model-free An objective of this work was to investigate kinetic information of a thermal degradation of polystyrene (PS) and high-density polyethylene (HDPE) blends under a pyrolysis atmosphere at different mixture compositions, using thermogravimetric analysis, operated non-isothermally, and model-free method. It was found that the degradation temperature range can be reduced by an addition of PS. This is probably due to an attack of PE by polystyryl radicals. With regard to an activation energy calculation based on model-free method, the activation energies of the thermal degradation tended to increase with a level of conversion, for all cases. The lower the level of conversion, the closer the activation energy value to that of 100%PS. With higher level of conversion, the activation energy values were approaching to that of 100% HDPE. This could be due to the fact that the polystyryl free radical from PS is diminished along the conversion path and, hence, at a higher level of conversion, the degradation process has no more influence of such free radical. Finally, the activation energy of single PS was lower than that of single HDPE and a proportion of PS to HDPE has no effect on the activation energy, but the level of conversion. 2019-08-21T09:18:21Z 2019-08-21T09:18:21Z 2016 Chiang Mai Journal of Science 43, 2 (SPECIAL ISSUE 1, 2016), 296 - 305 0125-2526 http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6724 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66087 Eng Science Faculty of Chiang Mai University
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
topic thermal degradation
polystyrene
high-density polyethylene
model-free
spellingShingle thermal degradation
polystyrene
high-density polyethylene
model-free
Kasawat Tippaha
Nichaphat Jittangkoon
Parimanan Cherntongchai
Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends
description An objective of this work was to investigate kinetic information of a thermal degradation of polystyrene (PS) and high-density polyethylene (HDPE) blends under a pyrolysis atmosphere at different mixture compositions, using thermogravimetric analysis, operated non-isothermally, and model-free method. It was found that the degradation temperature range can be reduced by an addition of PS. This is probably due to an attack of PE by polystyryl radicals. With regard to an activation energy calculation based on model-free method, the activation energies of the thermal degradation tended to increase with a level of conversion, for all cases. The lower the level of conversion, the closer the activation energy value to that of 100%PS. With higher level of conversion, the activation energy values were approaching to that of 100% HDPE. This could be due to the fact that the polystyryl free radical from PS is diminished along the conversion path and, hence, at a higher level of conversion, the degradation process has no more influence of such free radical. Finally, the activation energy of single PS was lower than that of single HDPE and a proportion of PS to HDPE has no effect on the activation energy, but the level of conversion.
author Kasawat Tippaha
Nichaphat Jittangkoon
Parimanan Cherntongchai
author_facet Kasawat Tippaha
Nichaphat Jittangkoon
Parimanan Cherntongchai
author_sort Kasawat Tippaha
title Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends
title_short Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends
title_full Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends
title_fullStr Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends
title_full_unstemmed Model-free Kinetic Analysis of Thermal Degradation of Polystyrene and High-Density Polyethylene Blends
title_sort model-free kinetic analysis of thermal degradation of polystyrene and high-density polyethylene blends
publisher Science Faculty of Chiang Mai University
publishDate 2019
url http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6724
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66087
_version_ 1681426389747630080