Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model

Moving average in the errors of simultaneous equations model (SEM) is a crucial problem making the estimators from the ordinary least squares (OLS) method inefficient. For this reason, we proposed the transformation matrix in order to correct the first-order moving average, MA(1), that generates in...

Full description

Saved in:
Bibliographic Details
Main Authors: Warangkhana Keerativibool, Jirawan Jitthavech
Language:English
Published: Science Faculty of Chiang Mai University 2019
Subjects:
Online Access:http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=5945
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66146
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-66146
record_format dspace
spelling th-cmuir.6653943832-661462019-08-21T09:18:22Z Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model Warangkhana Keerativibool Jirawan Jitthavech First-order moving average MA(1) Kullback information criterion for a system of SEM (SKIC) Simultaneous equations model (SEM) Transformation matrix Moving average in the errors of simultaneous equations model (SEM) is a crucial problem making the estimators from the ordinary least squares (OLS) method inefficient. For this reason, we proposed the transformation matrix in order to correct the first-order moving average, MA(1), that generates in the fitted model and to recover the one lost observation in a SEM. After the errors are transformed to be independent, the Kullback information criterion for selecting the appropriate SEM, called SKIC, is derived where the problem of contemporaneous correlation still be considered. SKIC is constructed based on the symmetric divergence which is obtained by sum of the two directed divergences. The symmetric divergence is arguably more sensitive than either of its individual components. The performance of selection of the order of the model from the proposed criterion, SKIC, is examined relative to SAIC proposed by Keerativibool (2009). The results of simulation study show that the errors of the model after transformation are independent and SKIC convincingly outperformed SAIC because SAIC has a tendency to overfit the order of the model more so than does SKIC. 2019-08-21T09:18:22Z 2019-08-21T09:18:22Z 2015 Chiang Mai Journal of Science 42, 3 (July 2015), 761 - 773 0125-2526 http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=5945 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66146 Eng Science Faculty of Chiang Mai University
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
topic First-order moving average MA(1)
Kullback information criterion for a system of SEM (SKIC)
Simultaneous equations model (SEM)
Transformation matrix
spellingShingle First-order moving average MA(1)
Kullback information criterion for a system of SEM (SKIC)
Simultaneous equations model (SEM)
Transformation matrix
Warangkhana Keerativibool
Jirawan Jitthavech
Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model
description Moving average in the errors of simultaneous equations model (SEM) is a crucial problem making the estimators from the ordinary least squares (OLS) method inefficient. For this reason, we proposed the transformation matrix in order to correct the first-order moving average, MA(1), that generates in the fitted model and to recover the one lost observation in a SEM. After the errors are transformed to be independent, the Kullback information criterion for selecting the appropriate SEM, called SKIC, is derived where the problem of contemporaneous correlation still be considered. SKIC is constructed based on the symmetric divergence which is obtained by sum of the two directed divergences. The symmetric divergence is arguably more sensitive than either of its individual components. The performance of selection of the order of the model from the proposed criterion, SKIC, is examined relative to SAIC proposed by Keerativibool (2009). The results of simulation study show that the errors of the model after transformation are independent and SKIC convincingly outperformed SAIC because SAIC has a tendency to overfit the order of the model more so than does SKIC.
author Warangkhana Keerativibool
Jirawan Jitthavech
author_facet Warangkhana Keerativibool
Jirawan Jitthavech
author_sort Warangkhana Keerativibool
title Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model
title_short Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model
title_full Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model
title_fullStr Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model
title_full_unstemmed Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model
title_sort model selection criterion based on kullback-leibler’s symmetric divergence for simultaneous equations model
publisher Science Faculty of Chiang Mai University
publishDate 2019
url http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=5945
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66146
_version_ 1681426400618217472